Trait Specific Expression Profiling of Salt Stress Responsive Genes in Diverse Rice Genotypes as Determined by Modified Significance Analysis of Microarrays

被引:26
|
作者
Hossain, Mohammad R. [1 ,2 ]
Bassel, George W. [2 ]
Pritchard, Jeremy [2 ]
Sharma, Garima P. [2 ]
Ford-Lloyd, Brian V. [2 ]
机构
[1] Bangladesh Agr Univ, Dept Genet & Plant Breeding, Mymensingh, Bangladesh
[2] Univ Birmingham, Sch Biosci, Birmingham, W Midlands, England
来源
FRONTIERS IN PLANT SCIENCE | 2016年 / 7卷
基金
英国生物技术与生命科学研究理事会;
关键词
transcriptomics; significance analysis of microarrays (SAM); rice; salt tolerance; gene ontology enrichment; regulatory network; TRANSCRIPTION FACTOR; DROUGHT TOLERANCE; ABC TRANSPORTERS; IMPROVES DROUGHT; PLANT-RESPONSES; SALINITY STRESS; PLASMA-MEMBRANE; KINASES; PROTEIN; ROOTS;
D O I
10.3389/fpls.2016.00567
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Stress responsive gene expression is commonly profiled in a comparative manner involving different stress conditions or genotypes with contrasting reputation of tolerance/resistance. In contrast, this research exploited a wide natural variation in terms of taxonomy, origin and salt sensitivity in eight genotypes of rice to identify the trait specific patterns of gene expression under salt stress. Genome wide transcptomic responses were interrogated by the weighted continuous morpho-physiological trait responses using modified Significance Analysis of Microarrays. More number of genes was found to be differentially expressed under salt stressed compared to that of under unstressed conditions. Higher numbers of genes were observed to be differentially expressed for the traits shoot Na+/K+, shoot Na+, root K+, biomass and shoot Cl-, respectively. The results identified around 60 genes to be involved in Na+, K+, and anion homeostasis, transport, and transmembrane activity under stressed conditions. Gene Ontology (GO) enrichment analysis identified 1.36% (578 genes) of the entire transcriptome to be involved in the major molecular functions such as signal transduction (>150 genes), transcription factor (81 genes), and translation factor activity (62 genes) etc., under salt stress. Chromosomal mapping of the genes suggests that majority of the genes are located on chromosomes 1, 2, 3, 6, and 7. The gene network analysis showed that the transcription factors and translation initiation factors formed the major gene networks and are mostly active in nucleus, cytoplasm and mitochondria whereas the membrane and vesicle bound proteins formed a secondary network active in plasma membrane and vacuoles. The novel genes and the genes with unknown functions thus identified provide picture of a synergistic salinity response representing the potentially fundamental mechanisms that are active in the wide natural genetic background of rice and will be of greater use once their roles are functionally verified.
引用
收藏
页数:17
相关论文
共 31 条
  • [21] Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice
    Fang, Yujie
    You, Jun
    Xie, Kabin
    Xie, Weibo
    Xiong, Lizhong
    MOLECULAR GENETICS AND GENOMICS, 2008, 280 (06) : 547 - 563
  • [22] Identification, expression analysis, and functional characterization of salt stress-responsive genes of AP2/ERF transcription factors in sweetpotato
    Meng, Xiaoqing
    Liu, Siyuan
    Dong, Tingting
    Li, Zongyun
    Ma, Daifu
    Pan, Shenyuan
    Zhu, Mingku
    CROP SCIENCE, 2020, 60 (06) : 3247 - 3260
  • [23] Tissue-specific expression analysis of Na+ and Cl− transporter genes associated with salt removal ability in rice leaf sheath
    Sarin Neang
    Itsuki Goto
    Nicola Stephanie Skoulding
    Joyce A. Cartagena
    Mana Kano-Nakata
    Akira Yamauchi
    Shiro Mitsuya
    BMC Plant Biology, 20
  • [24] Morphological Analysis, Protein Profiling and Expression Analysis of Auxin Homeostasis Genes of Roots of Two Contrasting Cultivars of Rice Provide Inputs on Mechanisms Involved in Rice Adaptation towards Salinity Stress
    Saini, Shivani
    Kaur, Navdeep
    Marothia, Deeksha
    Singh, Baldev
    Singh, Varinder
    Gantet, Pascal
    Pati, Pratap Kumar
    PLANTS-BASEL, 2021, 10 (08):
  • [25] Genome-Wide Phylogenetic Analysis of Stress-Activated Protein Kinase Genes in Rice (OsSAPKs) and Expression Profiling in Response to Xanthomonas oryzae pv. oryzicola Infection
    Xu, Mei-Rong
    Huang, Li-Yu
    Zhang, Fan
    Zhu, Ling-Hua
    Zhou, Yong-Li
    Li, Zhi-Kang
    PLANT MOLECULAR BIOLOGY REPORTER, 2013, 31 (04) : 877 - 885
  • [26] Tissue-specific expression analysis of Na+ and Cl- transporter genes associated with salt removal ability in rice leaf sheath
    Neang, Sarin
    Goto, Itsuki
    Skoulding, Nicola Stephanie
    Cartagena, Joyce A.
    Kano-Nakata, Mana
    Yamauchi, Akira
    Mitsuya, Shiro
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [27] Genome-wide analysis and expression profiling suggest diverse roles of GH3 genes during development and abiotic stress responses in legumes
    Singh, Vikash K.
    Jain, Mukesh
    Garg, Rohini
    FRONTIERS IN PLANT SCIENCE, 2015, 5 : 1 - 13
  • [28] Genome-wide identification, classification, expression profiling and DNA methylation (5mC) analysis of stress-responsive ZFP transcription factors in rice (Oryza saliva L.)
    Ahmad, Fiaz
    Farman, Kiran
    Waseem, Muhammad
    Rana, Rashid Mehmood
    Nawaz, Muhammad Amjad
    Rehman, Hafiz Mamoon
    Abbas, Tanveer
    Baloch, Faheem Shehzad
    Akrem, Ahmed
    Huang, Ji
    Zhang, Hongsheng
    GENE, 2019, 718
  • [29] Identification of major candidate genes for multiple abiotic stress tolerance at seedling stage by network analysis and their validation by expression profiling in rice (Oryza sativa L.)
    M. K. Ramkumar
    Ekta Mulani
    Vasudha Jadon
    V. Sureshkumar
    S. Gopala Krishnan
    S. Senthil Kumar
    M. Raveendran
    A. K. Singh
    Amolkumar U. Solanke
    N. K. Singh
    Amitha Mithra Sevanthi
    3 Biotech, 2022, 12
  • [30] Identification of major candidate genes for multiple abiotic stress tolerance at seedling stage by network analysis and their validation by expression profiling in rice (Oryza sativa L.)
    Ramkumar, M. K.
    Mulani, Ekta
    Jadon, Vasudha
    Sureshkumar, V
    Krishnan, S. Gopala
    Kumar, S. Senthil
    Raveendran, M.
    Singh, A. K.
    Solanke, Amolkumar U.
    Singh, N. K.
    Sevanthi, Amitha Mithra
    3 BIOTECH, 2022, 12 (06)