An amalgamated duplication of a ring along an ideal: The basic properties

被引:216
作者
D'Anna, Marco
Fontana, Marco
机构
[1] Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
[2] Univ Roma Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
关键词
idealization; pullback; zariski topology;
D O I
10.1142/S0219498807002326
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new general construction, denoted by R (sic) E, called the amalgamated duplication of a ring R along an R-module E, that we assume to be an ideal in some overring of R. (Note that, when E-2 = 0, R (sic) E coincides with the Nagata's idealization R(sic) E.) After discussing the main properties of the amalgamated duplication R (sic) E in relation with pullback-type constructions, we restrict our investigation to the study of R (sic) E when E is an ideal of R. Special attention is devoted to the ideal-theoretic properties of R (sic) E and to the topological structure of its prime spectrum.
引用
收藏
页码:443 / 459
页数:17
相关论文
共 18 条
[1]   A construction of Gorenstein rings [J].
D'Anna, Marco .
JOURNAL OF ALGEBRA, 2006, 306 (02) :507-519
[2]  
DANNA M, IN PRESS ARK MAT
[3]   MINIMAL HOMOMORPHISMS OF RINGS [J].
FERRAND, D ;
OLIVIER, JP .
JOURNAL OF ALGEBRA, 1970, 16 (03) :461-&
[4]  
Fontana M., 1980, Ann. Mat. Pura Appl. (4), V123, P331, DOI [DOI 10.1007/BF01796550, 10.1007/BF01796550]
[5]   COMMUTATIVE EXTENSIONS BY CANONICAL MODULES ARE GORENSTEIN RINGS [J].
FOSSUM, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 40 (02) :395-400
[6]  
Fossum R.M., 1975, LECT NOTES MATH, V456
[7]  
GABELLI S, 2000, MATH APPL, V520, P199
[8]  
Gilmer R., 1972, Multiplicative Ideal Theory
[9]  
GLAZ S, 1989, COMMUTTATIVE COHEREN, V1321
[10]   m-Canonical ideals in integral domains [J].
Heinzer, WJ ;
Huckaba, JA ;
Papick, IJ .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (09) :3021-3043