Global Symmetries, Local Symmetries and Groupoids

被引:2
作者
Petitjean, Michel [1 ,2 ]
机构
[1] Univ Paris, BFA, CNRS, UMR 8251,INSERM,ERL U1133, F-75013 Paris, France
[2] CNRS, UMR 7592, Inst Jacques Monod, E Pole Genoinformat, F-75013 Paris, France
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 10期
关键词
global symmetry; local symmetry; groupoids; CHIRALITY; GRAPHS; SPACE;
D O I
10.3390/sym13101905
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Local symmetries are primarily defined in the case of spacetime, but several authors have defined them outside this context, sometimes with the help of groupoids. We show that, in many cases, local symmetries can be defined as global symmetries. We also show that groups can be used, rather than groupoids, to handle local symmetries. Examples are given for graphs and networks, color symmetry and tilings. The definition of local symmetry in physics is also discussed.</p>
引用
收藏
页数:10
相关论文
共 50 条
[21]   Killing symmetries as Hamiltonian constraints [J].
Lusanna, Luca .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2016, 13 (04)
[22]   The geometric nature of Lie and Noether symmetries [J].
Tsamparlis, Michael ;
Paliathanasis, Andronikos .
GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (06) :1861-1881
[23]   Symmetries and Their Breaking in the Fundamental Laws of Physics [J].
Bernabeu, Jose .
SYMMETRY-BASEL, 2020, 12 (08) :1-27
[24]   κ-deformed complex fields and discrete symmetries [J].
Arzano, Michele ;
Bevilacqua, Andrea ;
Kowalski-Glikman, Jerzy ;
Rosati, Giacomo ;
Unger, Josua .
PHYSICAL REVIEW D, 2021, 103 (10)
[25]   Instantons, symmetries and anomalies in five dimensions [J].
Genolini, Pietro Benetti ;
Tizzano, Luigi .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (04)
[26]   Noether symmetries in symmetric teleparallel cosmology [J].
Dialektopoulos, Konstantinos F. ;
Koivisto, Tomi S. ;
Capozziello, Salvatore .
EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (07)
[27]   RIGID AND FLEXIBLE SYMMETRIES OF EMBEDDED GRAPHS [J].
FLAPAN, E .
NEW JOURNAL OF CHEMISTRY, 1993, 17 (10-11) :645-653
[28]   Probabilistic Symmetries and Invariant Neural Networks [J].
Bloem-Reddy, Benjamin ;
Teh, Yee Whye .
JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
[29]   A Characterization of Holomorphic Borcherds Lifts by Symmetries [J].
Heim, Bernhard ;
Murase, Atsushi .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (21) :11150-11185
[30]   Shift-symmetries at higher order [J].
Abel, Steven ;
Stewart, Richard J. .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (02)