Global Symmetries, Local Symmetries and Groupoids

被引:2
作者
Petitjean, Michel [1 ,2 ]
机构
[1] Univ Paris, BFA, CNRS, UMR 8251,INSERM,ERL U1133, F-75013 Paris, France
[2] CNRS, UMR 7592, Inst Jacques Monod, E Pole Genoinformat, F-75013 Paris, France
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 10期
关键词
global symmetry; local symmetry; groupoids; CHIRALITY; GRAPHS; SPACE;
D O I
10.3390/sym13101905
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Local symmetries are primarily defined in the case of spacetime, but several authors have defined them outside this context, sometimes with the help of groupoids. We show that, in many cases, local symmetries can be defined as global symmetries. We also show that groups can be used, rather than groupoids, to handle local symmetries. Examples are given for graphs and networks, color symmetry and tilings. The definition of local symmetry in physics is also discussed.</p>
引用
收藏
页数:10
相关论文
共 50 条
[11]   Symmetries of the rolling model [J].
Chitour, Yacine ;
Molina, Mauricio Godoy ;
Kokkonen, Petri .
MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (3-4) :783-805
[12]   Deformed discrete symmetries [J].
Arzano, Michele ;
Kowalski-Glikman, Jerzy .
PHYSICS LETTERS B, 2016, 760 :69-73
[13]   HOMOLOGY OF ORIGAMIS WITH SYMMETRIES [J].
Matheus, Carlos ;
Yoccoz, Jean-Christophe ;
Zmiaikou, David .
ANNALES DE L INSTITUT FOURIER, 2014, 64 (03) :1131-1176
[14]   Symbolic Computation of Local Symmetries of Nonlinear and Linear Partial and Ordinary Differential Equations [J].
Cheviakov A.F. .
Mathematics in Computer Science, 2010, 4 (2-3) :203-222
[15]   Quantum Network Transfer and Storage with Compact Localized States Induced by Local Symmetries [J].
Roentgen, M. ;
Morfonios, C., V ;
Brouzos, I ;
Diakonos, F. K. ;
Schmelcher, P. .
PHYSICAL REVIEW LETTERS, 2019, 123 (08)
[16]   APPROXIMATE LUMPABILITY FOR MARKOVIAN AGENT-BASED MODELS USING LOCAL SYMMETRIES [J].
Khudabukhsh, Wasiur R. ;
Auddy, Arnab ;
Disser, Yann ;
Koeppl, Heinz .
JOURNAL OF APPLIED PROBABILITY, 2019, 56 (03) :647-671
[17]   Tutte Polynomials and Graph Symmetries [J].
Chbili, Nafaa ;
Alderai, Noura ;
Ali, Roba ;
AlQedra, Raghd .
SYMMETRY-BASEL, 2022, 14 (10)
[18]   Symmetries of unlabelled planar triangulations [J].
Kang, Mihyun ;
Spruessel, Philipp .
ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (01)
[19]   Carrollian amplitudes and celestial symmetries [J].
Mason, Lionel ;
Ruzziconi, Romain ;
Srikant, Akshay Yelleshpur .
JOURNAL OF HIGH ENERGY PHYSICS, 2024, (05)
[20]   REMARKS ON THE SYMMETRIES OF A MODEL HYPERSURFACE [J].
Kolar, M. ;
Meylan, F. .
ANALYSIS MATHEMATICA, 2022, 48 (02) :545-565