Global Symmetries, Local Symmetries and Groupoids

被引:2
|
作者
Petitjean, Michel [1 ,2 ]
机构
[1] Univ Paris, BFA, CNRS, UMR 8251,INSERM,ERL U1133, F-75013 Paris, France
[2] CNRS, UMR 7592, Inst Jacques Monod, E Pole Genoinformat, F-75013 Paris, France
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 10期
关键词
global symmetry; local symmetry; groupoids; CHIRALITY; GRAPHS; SPACE;
D O I
10.3390/sym13101905
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Local symmetries are primarily defined in the case of spacetime, but several authors have defined them outside this context, sometimes with the help of groupoids. We show that, in many cases, local symmetries can be defined as global symmetries. We also show that groups can be used, rather than groupoids, to handle local symmetries. Examples are given for graphs and networks, color symmetry and tilings. The definition of local symmetry in physics is also discussed.</p>
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Local and global color symmetries of a symmetrical pattern
    Abila, Agatha Kristel
    Louise Antonctte De Louise Penas, Ma
    Taganap, Eduard
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2019, 75 : 730 - 745
  • [2] Data Types with Symmetries and Polynomial Functors over Groupoids
    Kock, Joachim
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2012, 286 : 351 - 365
  • [3] Exactly marginal deformations and global symmetries
    Green, Daniel
    Komargodski, Zohar
    Seiberg, Nathan
    Tachikawa, Yuji
    Wecht, Brian
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (06):
  • [4] Local symmetries of massless wave equations
    I. V. Shirokov
    Russian Physics Journal, 1998, 41 (5) : 414 - 419
  • [5] Symmetries in Reversible Programming From Symmetric Rig Groupoids to Reversible Programming Languages
    Choudhury, Vikraman
    Karwowski, Jacek
    Sabry, Amr
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2022, 6 (POPL):
  • [6] ON LOCAL CURVATURE SYMMETRIES OF GRW SPACE-TIMES
    De, Uday Chand
    Shenawy, Sameh
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 88 (03) : 313 - 325
  • [7] Strange Symmetries
    Amiot, Emmanuel
    MATHEMATICS AND COMPUTATION IN MUSIC, MCM 2017, 2017, 10527 : 135 - 150
  • [8] Almost Contact Metric Manifolds with Local Riemannian and Ricci Symmetries
    Wang, Yaning
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (04)
  • [9] Almost Contact Metric Manifolds with Local Riemannian and Ricci Symmetries
    Yaning Wang
    Mediterranean Journal of Mathematics, 2019, 16
  • [10] Spatial symmetries in nonlocal multipolar metasurfaces
    Achouri, Karim
    Tiukuvaara, Ville
    Martin, Olivier J. F.
    ADVANCED PHOTONICS, 2023, 5 (04):