Isomorphisms of β-Dyson's Brownian motion with Brownian local time

被引:0
|
作者
Lupu, Titus [1 ]
机构
[1] Sorbonne Univ, CNRS, LPSM, Paris, France
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2021年 / 26卷
关键词
Dyson's Brownian motion; Gaussian beta ensembles; Gaussian free field; isomor-phism theorems; local time; permanental fields; topological expansion; EIGENVALUES; PARTICLES; FIELDS;
D O I
10.1214/21-EJP697
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that the Brydges-Frohlich-Spencer-Dynkin and the Le Jan's isomorphisms between the Gaussian free fields and the occupation times of symmetric Markov processes generalize to the 0-Dyson's Brownian motion. For 0 P t1, 2, 4u this is a consequence of the Gaussian case, however the relation holds for general 0. We further raise the question whether there is an analogue of 0-Dyson's Brownian motion on general electrical networks, interpolating and extrapolating the fields of eigenvalues in matrix-valued Gaussian free fields. In the case n " 2 we give a simple construction.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] The Vervaat transform of Brownian bridges and Brownian motion
    Lupu, Titus
    Pitman, Jim
    Tang, Wenpin
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 31
  • [42] Continuity in law with respect to the Hurst parameter of the local time of the fractional Brownian motion
    Jolis, Maria
    Viles, Noelia
    JOURNAL OF THEORETICAL PROBABILITY, 2007, 20 (02) : 133 - 152
  • [43] Local behaviour of local times of super-Brownian motion
    Merle, Mathieu
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2006, 42 (04): : 491 - 520
  • [44] Continuity in Law with Respect to the Hurst Parameter of the Local Time of the Fractional Brownian Motion
    Maria Jolis
    Noèlia Viles
    Journal of Theoretical Probability, 2007, 20 : 133 - 152
  • [45] A multiscale guide to Brownian motion
    Grebenkov, Denis S.
    Belyaev, Dmitry
    Jones, Peter W.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (04)
  • [46] OCCUPATION TIME PROBLEM FOR MULTIFRACTIONAL BROWNIAN MOTION
    Ouahra, Mohamed Ait
    Guerbaz, Raby
    Ouahhabi, Hanae
    Sghir, Aissa
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2019, 39 (01): : 99 - 113
  • [47] Laws of the iterated logarithm for α-time Brownian motion
    Nane, Erkan
    ELECTRONIC JOURNAL OF PROBABILITY, 2006, 11 : 434 - 459
  • [48] Renormalization of local times of super-Brownian motion
    Hong, Jieliang
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [49] Penalizations of the Brownian motion with a functional of its local times
    Najnudel, Joseph
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2008, 118 (08) : 1407 - 1433
  • [50] Distributions of some functionals of the Brownian local time
    Borodin A.N.
    Journal of Mathematical Sciences, 2005, 128 (1) : 2503 - 2510