Extreme Learning Regression for nu Regularization

被引:2
作者
Ding, Xiao-Jian [1 ]
Yang, Fan [1 ]
Liu, Jian [1 ]
Cao, Jie [1 ]
机构
[1] Nanjing Univ Finance & Econ, Coll Informat Engn, Nanjing 210007, Peoples R China
基金
中国国家自然科学基金;
关键词
MACHINE; NETWORKS;
D O I
10.1080/08839514.2020.1723863
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Extreme learning machine for regression (ELR), though efficient, is not preferred in time-limited applications, due to the model selection time being large. To overcome this problem, we reformulate ELR to take a new regularization parameter nu (nu-ELR) which is inspired by Scholkopf et al. The regularization in terms of nu is bounded between 0 and 1, and is easier to interpret compared to C. In this paper, we propose using the active set algorithm to solve the quadratic programming optimization problem of nu-ELR. Experimental results on real regression problems show that nu-ELR performs better than ELM, ELR, and nu-SVR, and is computationally efficient compared to other iterative learning models. Additionally, the model selection time of nu-ELR can be significantly shortened.
引用
收藏
页码:378 / 395
页数:18
相关论文
共 50 条
  • [41] Memetic Extreme Learning Machine
    Zhang, Yongshan
    Wu, Jia
    Cai, Zhihua
    Zhang, Peng
    Chen, Ling
    PATTERN RECOGNITION, 2016, 58 : 135 - 148
  • [42] Data Partition Learning With Multiple Extreme Learning Machines
    Yang, Yimin
    Wu, Q. M. J.
    Wang, Yaonan
    Zeeshan, K. M.
    Lin, Xiaofeng
    Yuan, Xiaofang
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (08) : 1463 - 1475
  • [43] Comparative diesel engine performance and emission forecasting using extreme learning and quadratic regression techniques burning waste cooking biodiesel
    Gad, M. S.
    Alenany, Ahmed
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 60 : 94 - 106
  • [44] Extreme Learning ANFIS for Control Applications
    Pillai, G. N.
    Pushpak, Jagtap
    Nisha, M. Germin
    2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA), 2014, : 7 - 14
  • [45] Ensemble Based Extreme Learning Machine
    Liu, Nan
    Wang, Han
    IEEE SIGNAL PROCESSING LETTERS, 2010, 17 (08) : 754 - 757
  • [46] Evolutionary Circular Extreme Learning Machine
    Atsawaraungsuk, Sarutte
    Horata, Punyaphol
    Sunat, Khamron
    Chiewchanwattana, Sirapat
    Musigawan, Pakarat
    2013 INTERNATIONAL COMPUTER SCIENCE AND ENGINEERING CONFERENCE (ICSEC), 2013, : 292 - 297
  • [47] Deep Weighted Extreme Learning Machine
    Wang, Tianlei
    Cao, Jiuwen
    Lai, Xiaoping
    Chen, Badong
    COGNITIVE COMPUTATION, 2018, 10 (06) : 890 - 907
  • [48] Extreme Learning ANFIS for classification problems
    Tushar, Abhinav
    Abhinav
    Pillai, G. N.
    2015 1ST INTERNATIONAL CONFERENCE ON NEXT GENERATION COMPUTING TECHNOLOGIES (NGCT), 2015, : 784 - 787
  • [49] Dimension Reduction With Extreme Learning Machine
    Kasun, Liyanaarachchi Lekamalage Chamara
    Yang, Yan
    Huang, Guang-Bin
    Zhang, Zhengyou
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (08) : 3906 - 3918
  • [50] Hierarchical ensemble of Extreme Learning Machine
    Cai, Yaoming
    Liu, Xiaobo
    Zhang, Yongshan
    Cai, Zhihua
    PATTERN RECOGNITION LETTERS, 2018, 116 : 101 - 106