Submicron Metal 3D Printing by Ultrafast Laser Heating and Induced Ligand Transformation of Nanocrystals

被引:8
作者
Podder, Chinmoy [1 ]
Gong, Xiangtao [1 ]
Yu, Xiaowei [2 ]
Shou, Wan [2 ]
Pan, Heng [1 ,2 ]
机构
[1] Texas A&M Univ, J Mike Walker Dept Mech Engn 66, College Stn, TX 77843 USA
[2] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65401 USA
基金
美国国家科学基金会;
关键词
3D printing; submicron; femtosecond laser; ligand; nanocrystals; hot electron; microadditive manufacturing; CDTE QUANTUM DOTS; DIGITAL MICROFABRICATION; NANOPARTICLE; LITHOGRAPHY; FABRICATION; DEPOSITION; SCALE;
D O I
10.1021/acsami.1c10775
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Currently, light-based three-dimensional (3D) printing with submicron features is mainly developed based on photosensitive polymers or inorganic-polymer composite materials. To eliminate polymer/organic additives, a strategy for direct 3D assembly and printing of metallic nanocrystals without additives is presented. Ultrafast laser with intensity in the range of 1 x 10(10) to 1 x 10(12) W/cm(2) is used to nonequilibrium heat nanocrystals and induce ligand transformation, which triggers the spontaneous fusion and localized assembly of nanocrystals. The process is due to the operation of hot electrons as confirmed by a strong dependence of the printing rate on laser pulse duration varied in the range of electron-phonon relaxation time. Using the developed laser-induced ligand transformation (LILT) process, direct printing of 3D metallic structures at micro and submicron scales is demonstrated. Facile integration with other microscale additive manufacturing for printing 3D devices containing multiscale features is also demonstrated.
引用
收藏
页码:42154 / 42163
页数:10
相关论文
共 68 条
[11]  
Cohen A, 1998, SOL FREEFORM FABRIC, P161
[12]   3D Printing of Micrometer-Sized Transparent Ceramics with On-Demand Optical-Gain Properties [J].
Cooperstein, Ido ;
Indukuri, S. R. K. Chaitanya ;
Bouketov, Alisa ;
Levy, Uriel ;
Magdassi, Shlomo .
ADVANCED MATERIALS, 2020, 32 (28)
[13]   A method for building self-folding machines [J].
Felton, S. ;
Tolley, M. ;
Demaine, E. ;
Rus, D. ;
Wood, R. .
SCIENCE, 2014, 345 (6197) :644-646
[14]   Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films [J].
Fukuda, Kenjiro ;
Takeda, Yasunori ;
Yoshimura, Yudai ;
Shiwaku, Rei ;
Lam Truc Tran ;
Sekine, Tomohito ;
Mizukami, Makoto ;
Kumaki, Daisuke ;
Tokito, Shizuo .
NATURE COMMUNICATIONS, 2014, 5
[15]   Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets [J].
Galliker, P. ;
Schneider, J. ;
Eghlidi, H. ;
Kress, S. ;
Sandoghdar, V. ;
Poulikakos, D. .
NATURE COMMUNICATIONS, 2012, 3
[16]   Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres [J].
Gissibl, Timo ;
Thiele, Simon ;
Herkommer, Alois ;
Giessen, Harald .
NATURE COMMUNICATIONS, 2016, 7
[17]   Nonequilibrium Thermodynamics of Colloidal Gold Nanocrystals Monitored by Ultrafast Electron Diffraction and Optical Scattering Microscopy [J].
Guzelturk, Burak ;
Utterback, James K. ;
Coropceanu, Igor ;
Kamysbayev, Vladislav ;
Janke, Eric M. ;
Zajac, Marc ;
Yazdani, Nuri ;
Cotts, Benjamin L. ;
Park, Suji ;
Sood, Aditya ;
Lin, Ming-Fu ;
Reid, Alexander H. ;
Kozina, Michael E. ;
Shen, Xiaozhe ;
Weathersby, Stephen P. ;
Wood, Vanessa ;
Salleo, Alberto ;
Wang, Xijie ;
Talapin, Dmitri, V ;
Ginsberg, Naomi S. ;
Lindenberg, Aaron M. .
ACS NANO, 2020, 14 (04) :4792-4804
[18]  
Hai A, 2010, NAT METHODS, V7, P200, DOI [10.1038/nmeth.1420, 10.1038/NMETH.1420]
[19]   Vertical nanostructure arrays by plasma etching for applications in biology, energy, and electronics [J].
He, B. ;
Yang, Y. ;
Yuen, M. F. ;
Chen, X. F. ;
Lee, C. S. ;
Zhang, W. J. .
NANO TODAY, 2013, 8 (03) :265-289
[20]   High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials [J].
Higgins, Stuart G. ;
Becce, Michele ;
Belessiotis-Richards, Alexis ;
Seong, Hyejeong ;
Sero, Julia E. ;
Stevens, Molly M. .
ADVANCED MATERIALS, 2020, 32 (09)