Explicit formulas for Hecke Gauss sums in quadratic number fields

被引:1
作者
Boylan, Hatice [1 ,2 ]
Skoruppa, Nils-Peter [1 ]
机构
[1] Univ Siegen, Fachbereich Math, D-57072 Siegen, Germany
[2] Bilkent Univ, Matemat Bolumu, Ankara, Turkey
来源
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG | 2010年 / 80卷 / 02期
关键词
Hecke reciprocity; Gauss sums;
D O I
10.1007/s12188-010-0041-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive an explicit formula for Hecke Gauss sums of quadratic number fields. As an immediate consequence we obtain a quadratic reciprocity law in quadratic number fields which generalizes the classical one given by Hecke. The proofs use, apart from the well-known formulas for ordinary Gauss sums, only elementary algebraic manipulations.
引用
收藏
页码:213 / 226
页数:14
相关论文
共 13 条
[1]  
[Anonymous], 2009, SAGE MATH SOFTWARE V
[2]  
BOYLAN H, 2009, QUICK PROOF RE UNPUB
[3]  
Cassels JWS., 1968, Rational Quadratic Forms
[4]  
CAUCHY AL, 1840, CR HEBD ACAD SCI, V10, P560
[5]  
DIRICHLET JPG, 1840, J REINE ANGEW MATH, V21, P134
[6]  
DIRICHLET JPG, 1835, ABH K PREUSS AKAD WI, V21, P391
[7]  
GAUSS CF, 1811, COMMENT SOC REGIAE S, V1
[8]  
HARDER G, 1999, FUNDAMENTAL PRINCIPL, V322
[9]  
HASSE H, 1965, BERICHT NEUERE UNT 2
[10]  
HECKE E, 1983, MATH WERKE