Global Source Optimisation Based on Adaptive Nonlinear Particle Swarm Optimisation Algorithm for Inverse Lithography

被引:2
|
作者
Sun, Haifeng [1 ,2 ,3 ]
Du, Jing [1 ]
Jin, Chuan [1 ,3 ]
Feng, Jinhua [1 ]
Wang, Jian [1 ,3 ]
Hu, Song [1 ]
Liu, Junbo [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Sichuan, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2021年 / 13卷 / 04期
基金
中国国家自然科学基金;
关键词
Source optimisation; particle swarm optimisation algorithm; adaptive nonlinear control strategy; inverse lithography techniques; SOURCE MASK OPTIMIZATION; RESOLUTION ENHANCEMENT; PIXELATED SOURCE; MODEL;
D O I
10.1109/JPHOT.2021.3102229
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Source optimisation (SO) is an approved approach to improve the imaging quality in inverse lithography techniques. It is critical to apply an optimisation approach with high convergence efficiency and minimum errors in pixel-based SO. To improve the convergence efficiency of the pixel-based SO, a route of particle swarm optimiser (PSO) combined with the adaptive nonlinear control strategy (ANCS) is proposed in this study. As a global optimisation algorithm, ANCS-PSO has the attributes of breaking away from the local optimum by adjusting the particle learning factor adaptively. In addition, the nonlinear control approach can broaden the search range and speed up the convergence of the iteration operation. The proposed approach also is compared with the linear decreasing inertia weight strategy and the simulated annealing strategy. The performance verification simulation displays the validity of PSO-ANCS and its potentials in SO with high convergence efficiency and optimisation capacity, by comparing the linear decreasing inertia weight strategy and the simulated annealing strategy.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Particle based on biogeography-based optimisation for global optimisation problems
    Feng, Quanxi
    Liu, Sanyang
    Tang, Guoqiang
    Chen, Huazhou
    International Journal of Innovative Computing and Applications, 2013, 5 (04) : 228 - 239
  • [42] Location optimisation for antennas by asynchronous particle swarm optimisation
    Liao, Shu-Han
    Chiu, Chien-Ching
    Ho, Min-Hui
    IET COMMUNICATIONS, 2013, 7 (14) : 1510 - 1516
  • [43] Particle swarm optimisation for dynamic optimisation problems: a review
    Jordehi, Ahmad Rezaee
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8): : 1507 - 1516
  • [44] Multi-agent simulated annealing algorithm based on particle swarm optimisation algorithm
    Zhong, Yiwen
    Ning, Jing
    Zhang, Hui
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2012, 43 (04) : 335 - 342
  • [45] Particle Swarm Optimisation Applications in FACTS Optimisation Problem
    Jordehi, Ahmad Rezaee
    Jasni, Jasronita
    Wahab, Noor Izzri Abdul
    Abd Kadir, Mohd Zainal Abidin
    PROCEEDINGS OF THE 2013 IEEE 7TH INTERNATIONAL POWER ENGINEERING AND OPTIMIZATION CONFERENCE (PEOCO2013), 2013, : 193 - 198
  • [46] Particle swarm optimisation for dynamic optimisation problems: a review
    Ahmad Rezaee Jordehi
    Neural Computing and Applications, 2014, 25 : 1507 - 1516
  • [47] Particle swarm optimisation for discrete optimisation problems: a review
    Ahmad Rezaee Jordehi
    Jasronita Jasni
    Artificial Intelligence Review, 2015, 43 : 243 - 258
  • [48] Particle swarm optimisation for discrete optimisation problems: a review
    Jordehi, Ahmad Rezaee
    Jasni, Jasronita
    ARTIFICIAL INTELLIGENCE REVIEW, 2015, 43 (02) : 243 - 258
  • [49] Inverse Lithography Source Optimization via Particle Swarm Optimization and Genetic Combined Algorithm
    Sun, Haifeng
    Zhang, Qingyan
    Jin, Chuan
    Li, Yanli
    Tang, Yan
    Wang, Jian
    Hu, Song
    Liu, Junbo
    IEEE PHOTONICS JOURNAL, 2023, 15 (02):
  • [50] Study on optimisation of supply chain inventory management based on particle swarm optimisation
    Yao S.
    Dong Y.
    Gao J.
    Song M.
    International Journal of Industrial and Systems Engineering, 2023, 45 (03) : 365 - 377