Global Source Optimisation Based on Adaptive Nonlinear Particle Swarm Optimisation Algorithm for Inverse Lithography

被引:2
|
作者
Sun, Haifeng [1 ,2 ,3 ]
Du, Jing [1 ]
Jin, Chuan [1 ,3 ]
Feng, Jinhua [1 ]
Wang, Jian [1 ,3 ]
Hu, Song [1 ]
Liu, Junbo [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Sichuan, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2021年 / 13卷 / 04期
基金
中国国家自然科学基金;
关键词
Source optimisation; particle swarm optimisation algorithm; adaptive nonlinear control strategy; inverse lithography techniques; SOURCE MASK OPTIMIZATION; RESOLUTION ENHANCEMENT; PIXELATED SOURCE; MODEL;
D O I
10.1109/JPHOT.2021.3102229
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Source optimisation (SO) is an approved approach to improve the imaging quality in inverse lithography techniques. It is critical to apply an optimisation approach with high convergence efficiency and minimum errors in pixel-based SO. To improve the convergence efficiency of the pixel-based SO, a route of particle swarm optimiser (PSO) combined with the adaptive nonlinear control strategy (ANCS) is proposed in this study. As a global optimisation algorithm, ANCS-PSO has the attributes of breaking away from the local optimum by adjusting the particle learning factor adaptively. In addition, the nonlinear control approach can broaden the search range and speed up the convergence of the iteration operation. The proposed approach also is compared with the linear decreasing inertia weight strategy and the simulated annealing strategy. The performance verification simulation displays the validity of PSO-ANCS and its potentials in SO with high convergence efficiency and optimisation capacity, by comparing the linear decreasing inertia weight strategy and the simulated annealing strategy.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] An improved particle swarm optimiser based on swarm success rate for global optimisation problems
    Adewumi, Aderemi Oluyinka
    Arasomwan, Akugbe Martins
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2016, 28 (03) : 441 - 483
  • [32] Study on the Optimisation Scheme of Heliostat Field Based on Particle Swarm Algorithm
    Jin, Zekun
    Zhu, Manzi
    Bai, Jie
    International Conference on Distributed Computing and Optimization Techniques, ICDCOT 2024, 2024,
  • [33] Wireless sensor networks routing algorithm based on particle swarm optimisation
    Yang, Junhan
    INTERNATIONAL JOURNAL OF INTERNET PROTOCOL TECHNOLOGY, 2018, 11 (03) : 159 - 164
  • [34] An adaptive multi-objective particle swarm optimisation algorithm based on fitness distance to streamline repository
    Wang, Suyu
    Ma, Dengcheng
    Ren, Ze
    Qu, Yuanyuan
    Wu, Miao
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2022, 20 (04) : 209 - 219
  • [35] Multi-region particle swarm optimisation algorithm
    Fan J.-S.
    Fan, J.-S. (fjsszw2005@126.com), 2012, Inderscience Publishers (44) : 117 - 123
  • [36] Hybrid particle swarm optimisation algorithm for image segmentation
    Zhang, Jian-de
    Lu, Jin-gui
    Li, Hong-liang
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2011, 14 (04) : 317 - 323
  • [37] Multi-region particle swarm optimisation algorithm
    Fan, Ji-Shan
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2012, 44 (02) : 117 - 123
  • [38] A Synchronous-Asynchronous Particle Swarm Optimisation Algorithm
    Ab Aziz, Nor Azlina
    Mubin, Marizan
    Mohamad, Mohd Saberi
    Ab Aziz, Kamarulzaman
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [39] A memetic particle swarm optimisation algorithm for dynamic multi-modal optimisation problems
    Wang, Hongfeng
    Yang, Shengxiang
    Ip, W. H.
    Wang, Dingwei
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2012, 43 (07) : 1268 - 1283
  • [40] Particle swarm optimisation based video abstraction
    Fayk, Magda B.
    El Nemr, Heba A.
    Moussa, Mona M.
    JOURNAL OF ADVANCED RESEARCH, 2010, 1 (02) : 163 - 167