Global Source Optimisation Based on Adaptive Nonlinear Particle Swarm Optimisation Algorithm for Inverse Lithography

被引:2
|
作者
Sun, Haifeng [1 ,2 ,3 ]
Du, Jing [1 ]
Jin, Chuan [1 ,3 ]
Feng, Jinhua [1 ]
Wang, Jian [1 ,3 ]
Hu, Song [1 ]
Liu, Junbo [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Sichuan, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2021年 / 13卷 / 04期
基金
中国国家自然科学基金;
关键词
Source optimisation; particle swarm optimisation algorithm; adaptive nonlinear control strategy; inverse lithography techniques; SOURCE MASK OPTIMIZATION; RESOLUTION ENHANCEMENT; PIXELATED SOURCE; MODEL;
D O I
10.1109/JPHOT.2021.3102229
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Source optimisation (SO) is an approved approach to improve the imaging quality in inverse lithography techniques. It is critical to apply an optimisation approach with high convergence efficiency and minimum errors in pixel-based SO. To improve the convergence efficiency of the pixel-based SO, a route of particle swarm optimiser (PSO) combined with the adaptive nonlinear control strategy (ANCS) is proposed in this study. As a global optimisation algorithm, ANCS-PSO has the attributes of breaking away from the local optimum by adjusting the particle learning factor adaptively. In addition, the nonlinear control approach can broaden the search range and speed up the convergence of the iteration operation. The proposed approach also is compared with the linear decreasing inertia weight strategy and the simulated annealing strategy. The performance verification simulation displays the validity of PSO-ANCS and its potentials in SO with high convergence efficiency and optimisation capacity, by comparing the linear decreasing inertia weight strategy and the simulated annealing strategy.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Modified salp swarm algorithm for global optimisation
    Fatima Ouaar
    Redouane Boudjemaa
    Neural Computing and Applications, 2021, 33 : 8709 - 8734
  • [22] Modified salp swarm algorithm for global optimisation
    Ouaar, Fatima
    Boudjemaa, Redouane
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (14): : 8709 - 8734
  • [23] On the performance of particle swarm optimisation with(out) some control parameters for global optimisation
    Adewumi, Aderemi Oluyinka
    Arasomwan, Martins Akugbe
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2016, 8 (01) : 14 - 32
  • [24] A self-adaptive particle swarm optimisation and bacterial foraging hybrid algorithm
    Li R.
    Hu Z.-J.
    International Journal of Wireless and Mobile Computing, 2016, 11 (03) : 258 - 265
  • [25] Particle swarm optimisation algorithm for radio frequency identification network topology optimisation
    Zhang, Li
    Lu, Jin-gui
    Chen, Lei
    Zhang, Jian-de
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2011, 6 (1-2) : 16 - 23
  • [26] Scheduling optimisation of flexible manufacturing systems using particle swarm optimisation algorithm
    Jerald, J
    Asokan, P
    Prabaharan, G
    Saravanan, R
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2005, 25 (9-10): : 964 - 971
  • [27] Scheduling optimisation of flexible manufacturing systems using particle swarm optimisation algorithm
    J. Jerald
    P. Asokan
    G. Prabaharan
    R. Saravanan
    The International Journal of Advanced Manufacturing Technology, 2005, 25 : 964 - 971
  • [28] Parameters optimisation of a vehicle suspension system using a particle swarm optimisation algorithm
    Centeno Drehmer, Luis Roberto
    Paucar Casas, Walter Jesus
    Gomes, Herbert Martins
    VEHICLE SYSTEM DYNAMICS, 2015, 53 (04) : 449 - 474
  • [29] An optimisation of 3D printing parameters of nanocomposites based on improved particle swarm optimisation algorithm
    Zhang J.
    Yang Y.
    International Journal of Microstructure and Materials Properties, 2023, 16 (04) : 266 - 277
  • [30] Parameter Optimisation of Wavelet Denoising for Pulsed Eddy Current Signals Based on Particle Swarm Optimisation Algorithm
    Shao, Qianqiu
    Fan, Songhai
    Liu, Fenglian
    NONDESTRUCTIVE TESTING AND EVALUATION, 2024, 39 (05) : 1210 - 1224