Preparation and controlled self-assembly of janus magnetic nanoparticles

被引:181
|
作者
Lattuada, Marco [1 ]
Hatton, T. Alan [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
关键词
D O I
10.1021/ja0740521
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Janus magnetic nanoparticles (similar to 20 nm) were prepared by grafting either polystyrene sodium sulfonate (PSSNa) or polydimethylamino ethylmethacrylate (PDMAEMA) to the exposed surfaces of negatively charged poly(acrylic acid) (PAA)-coated magnetite nanoparticles adsorbed onto positively charged silica beads. Individually dispersed Janus nanoparticles were obtained by repulsion from the beads on reversal of the silica surface charge when the solution pH was increased. Controlled aggregation of the Janus nanoparticles was observed at low pH values, with the formation of stable clusters of approximately 2-4 times the initial size of the particles. Cluster formation was reversed, and individually dispersed nanoparticles recovered, by restoring the pH to high values. At intermediate pH values, PSSNa Janus nanoparticles showed moderate clustering, while PDMAEMA Janus nanoparticles aggregated uncontrollably due to dipolar interactions. The size of the stable clusters could be controlled by increasing the molecular weight of the grafted polymer, or by decreasing the magnetic nanoparticle surface availability for grafting, both of which yielded larger cluster sizes. The addition of small amounts of PAA-coated magnetic nanoparticles to the Janus nanoparticle suspension resulted in a further increase in the final cluster size. Monte Carlo simulation results compared favorably with experimental observations and showed the formation of small, elongated clusters similar in structure to those observed in cryo-TEM images.
引用
收藏
页码:12878 / 12889
页数:12
相关论文
共 50 条
  • [1] Preparation and controlled self-assembly of Janus magnetic nanoparticles
    Lattuada, Marco
    Isojima, Tatsushi
    Hatton, T. Alan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [2] COLL 123-Preparation and controlled self-assembly of Janus magnetic nanoparticles
    Kelemen, Simon R.
    Sansone, Michael
    Kwiatek, Peter J.
    Gorbaty, Martin L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [3] Photo-Responsive Self-Assembly of Plasmonic Magnetic Janus Nanoparticles
    Niehues, Maximilian
    Engel, Sabrina
    Ravoo, Bart Jan
    LANGMUIR, 2021, 37 (37) : 11123 - 11130
  • [4] Self-Assembly of Janus Nanoparticles into Transformable Suprastructures
    Kang, Chengjun
    Honciuc, Andrei
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (06): : 1415 - 1421
  • [5] Self-Assembly of Janus Nanoparticles in Diblock Copolymers
    Yan, Li-Tang
    Popp, Nicole
    Ghosh, Sujit-Kumar
    Boeker, Alexander
    ACS NANO, 2010, 4 (02) : 913 - 920
  • [6] Solution self-assembly of plasmonic Janus nanoparticles
    Castro, Nicolo
    Constantin, Doru
    Davidson, Patrick
    Abecassis, Benjamin
    SOFT MATTER, 2016, 12 (48) : 9666 - 9673
  • [7] Solution self-assembly of plasmonic Janus nanoparticles
    Castro N.
    Constantin D.
    Davidson P.
    Abécassis B.
    Abécassis, Benjamin (benjamin.abecassis@u-psud.fr), 1600, Royal Society of Chemistry (12): : 9666 - 9673
  • [8] Self-assembly and controlled assembly of nanoparticles
    Dillenback, Lisa M.
    Yake, Allison
    Triplett, Derek
    Velegol, Darrell
    Fichthorn, Kristen A.
    Keating, Christine D.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [9] Versatile Triblock Janus Nanoparticles: Synthesis and Self-Assembly
    Kang, Chengjun
    Honciuc, Andrei
    CHEMISTRY OF MATERIALS, 2019, 31 (05) : 1688 - 1695
  • [10] Self-assembly of Janus nanoparticles with a hydrophobic hemisphere in nanotubes
    Kobayashi, Yusei
    Arai, Noriyoshi
    SOFT MATTER, 2016, 12 (02) : 378 - 385