Sequential and parallel algorithms for spherical interpolation

被引:0
作者
De Rossi, Alessandra [1 ]
机构
[1] Univ Turin, Dept Math, I-10123 Turin, Italy
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS | 2007年 / 936卷
关键词
radial basis functions; zonal basis functions; scattered data interpolation; local methods; IDW method; algorithms for approximation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a large set of scattered points on a sphere and their associated real values, we analyze sequential and parallel algorithms for the construction of a function defined on the sphere satisfying the interpolation conditions. The algorithms we implemented are based on a local interpolation method using spherical radial basis functions and the Inverse Distance Weighted method. Several numerical results show accuracy and efficiency of the algorithms.
引用
收藏
页码:476 / 479
页数:4
相关论文
共 8 条
  • [1] [Anonymous], SURFACE FITTING MULT
  • [2] [Anonymous], 2002, THESIS IMPERIAL COLL
  • [3] [Anonymous], 2003, RADIAL BASIS FUNCTIO
  • [4] BESSENGHI R, 2003, INT J COMPUT NUMER A, V3, P419
  • [5] COSTANZO M, 2005, WORLD SCI, P249
  • [6] DEROSSI A, 2005, MATH METHODS CURVES, P125
  • [7] Fasshauer GE, 1998, INNOV APPL MATH, P117
  • [8] MULTIVARIATE INTERPOLATION OF LARGE SETS OF SCATTERED DATA
    RENKA, RJ
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1988, 14 (02): : 139 - 148