Pullback V-attractors of the 3-dimensional globally modified Navier-Stokes equations

被引:46
作者
Kloeden, Peter E. [1 ]
Langa, Jose A.
Real, Jose
机构
[1] Goethe Univ Frankfurt, Inst Math, D-60054 Frankfurt, Germany
[2] Univ Seville, Dpto Ecuaciones Diferenciales & Anal Numer, E-41080 Seville, Spain
关键词
3-dimensional Navier-Stokes equations; weak solutions; existence and uniqueness of strong solutions; flattening property; nonautonomous and pullback attractors;
D O I
10.3934/cpaa.2007.6.937
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence and finite fractal dimension of a pullback attractor in the space V for a three dimensional system of the nonautonomous Globally Modified Navier-Stokes Equations on a bounded domain is established under appropriate properties on the time dependent forcing term. These equations were proposed recently by Caraballo et at and are obtained from the Navier-Stokes Equations by a global modification of the nonlinear advection term. The existence of the attractor is obtained via the flattening property, which is verified.
引用
收藏
页码:937 / 955
页数:19
相关论文
共 14 条
[1]  
[Anonymous], 1977, NAVIERSTOKES EQUATIO
[2]   Pullback attractors for asymptotically compact non-autonomous dynamical systems [J].
Caraballo, T ;
Lukaszewicz, G ;
Real, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) :484-498
[3]   The dimension of attractors of nonautonomous partial differential equations [J].
Caraballo, T ;
Langa, JA ;
Valero, J .
ANZIAM JOURNAL, 2003, 45 :207-222
[4]  
Caraballo T, 2006, ADV NONLINEAR STUD, V6, P411
[5]  
Constantin P, 2003, HANDBOOK OF MATHEMATICAL FLUID DYNAMICS, VOL II, P117
[6]  
KLOEDEN P.E., 2003, STOCH DYNAM, V3, P101
[7]   Flattening, squeezing and the existence of random attractors [J].
Kloeden, Peter E. ;
Langa, Jose A. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2077) :163-181
[8]  
LADYZHENSKAYA O, 1992, CR ACAD SCI I-MATH, V314, P253
[9]  
Lions JL., 1969, Quelques methodes de resolution des problemes aux limites non lineaires
[10]   Necessary and sufficient conditions for the existence of global attractors for semigroups and applications [J].
Ma, QF ;
Wang, SH ;
Zhong, CK .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2002, 51 (06) :1541-1559