AUTOMATED 5-YEAR MORTALITY PREDICTION USING DEEP LEARNING AND RADIOMICS FEATURES FROM CHEST COMPUTED TOMOGRAPHY

被引:0
作者
Carneiro, Gustavo [1 ]
Oakden-Rayner, Luke [2 ]
Bradley, Andrew P. [3 ]
Nascimento, Jacinto [4 ]
Palmer, Lyle [4 ]
机构
[1] Univ Adelaide, Australian Ctr Visual Technol, Adelaide, SA, Australia
[2] Univ Adelaide, Sch Publ Hlth, Adelaide, SA, Australia
[3] Univ Queensland, Sch ITEE, Brisbane, Qld, Australia
[4] Inst Super Tecn, Inst Syst & Robot, Lisbon, Portugal
来源
2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017) | 2017年
基金
澳大利亚研究理事会;
关键词
deep learning; radiomics; feature learning; hand-designed features; computed tomography; five-year mortality; CT;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In this paper, we propose new prognostic methods that predict 5-year mortality in elderly individuals using chest computed tomography (CT). The methods consist of a classifier that performs this prediction using a set of features extracted from the CT image and segmentation maps of multiple anatomic structures. We explore two approaches: 1) a unified framework based on two state-of-the-art deep learning models extended to 3-D inputs, where features and classifier are automatically learned in a single optimisation process; and 2) a multi-stage framework based on the design and selection and extraction of hand-crafted radiomics features, followed by the classifier learning process. Experimental results, based on a dataset of 48 annotated chest CTs, show that the deep learning models produces a mean 5-year mortality prediction AUC in [68.8%,69.8%] and accuracy in [64.5%,66.5%], while radiomics produces a mean AUC of 64.6% and accuracy of 64.6%. The successful development of the proposed models has the potential to make a profound impact in preventive and personalised healthcare.
引用
收藏
页码:130 / 134
页数:5
相关论文
共 50 条
[31]   Deep Learning Automated Segmentation for Muscle and Adipose Tissue from Abdominal Computed Tomography in Polytrauma Patients [J].
Ackermans, Leanne L. G. C. ;
Volmer, Leroy ;
Wee, Leonard ;
Brecheisen, Ralph ;
Sanchez-Gonzalez, Patricia ;
Seiffert, Alexander P. ;
Gomez, Enrique J. ;
Dekker, Andre ;
Ten Bosch, Jan A. ;
Olde Damink, Steven M. W. ;
Blokhuis, Taco J. .
SENSORS, 2021, 21 (06) :1-13
[32]   Direct Prediction of Cardiovascular Mortality from Low-dose Chest CT using Deep Learning [J].
van Velzen, Sanne G. M. ;
Zreik, Majd ;
Lessmann, Nikolas ;
Viergever, Max A. ;
de Jong, Pim A. ;
Verkooijen, Helena M. ;
Isgum, Ivana .
MEDICAL IMAGING 2019: IMAGE PROCESSING, 2019, 10949
[33]   Deep Learning Models for Severity Prediction of Acute Pancreatitis in the Early Phase From Abdominal Nonenhanced Computed Tomography Images [J].
Chen, Zhiyao ;
Wang, Yi ;
Zhang, Huiling ;
Yin, Hongkun ;
Hu, Cheng ;
Huang, Zixing ;
Tan, Qingyuan ;
Song, Bin ;
Deng, Lihui ;
Xia, Qing .
PANCREAS, 2023, 52 (01) :E45-E53
[34]   Clinical impact of a deep learning system for automated detection of missed pulmonary nodules on routine body computed tomography including the chest region [J].
Chen, Kueian ;
Lai, Ying-Chieh ;
Vanniarajan, Balamuralidhar ;
Wang, Pieh-Hsu ;
Wang, Shao-Chung ;
Lin, Yu-Chun ;
Ng, Shu-Hang ;
Tran, Pelu ;
Lin, Gigin .
EUROPEAN RADIOLOGY, 2022, 32 (05) :2891-2900
[35]   A Deep Learning Approach for Automated Bone Removal from Computed Tomography Angiography of the Brain [J].
Isikbay, Masis ;
Caton, M. Travis ;
Calabrese, Evan .
JOURNAL OF DIGITAL IMAGING, 2023, 36 (03) :964-972
[36]   A Deep Learning Approach for Automated Bone Removal from Computed Tomography Angiography of the Brain [J].
Masis Isikbay ;
M. Travis Caton ;
Evan Calabrese .
Journal of Digital Imaging, 2023, 36 :964-972
[37]   Identifying Prognostic Markers From Clinical, Radiomics, and Deep Learning Imaging Features for Gastric Cancer Survival Prediction [J].
Hao, Degan ;
Li, Qiong ;
Feng, Qiu-Xia ;
Qi, Liang ;
Liu, Xi-Sheng ;
Arefan, Dooman ;
Zhang, Yu-Dong ;
Wu, Shandong .
FRONTIERS IN ONCOLOGY, 2022, 11
[38]   Diagnosis of Idiopathic Pulmonary Fibrosis in High-Resolution Computed Tomography Scans Using a Combination of Handcrafted Radiomics and Deep Learning [J].
Refaee, Turkey ;
Salahuddin, Zohaib ;
Frix, Anne-Noelle ;
Yan, Chenggong ;
Wu, Guangyao ;
Woodruff, Henry C. ;
Gietema, Hester ;
Meunier, Paul ;
Louis, Renaud ;
Guiot, Julien ;
Lambin, Philippe .
FRONTIERS IN MEDICINE, 2022, 9
[39]   Kernel Conversion for Robust Quantitative Measurements of Archived Chest Computed Tomography Using Deep Learning-Based Image-to-Image Translation [J].
Tanabe, Naoya ;
Kaji, Shizuo ;
Shima, Hiroshi ;
Shiraishi, Yusuke ;
Maetani, Tomoki ;
Oguma, Tsuyoshi ;
Sato, Susumu ;
Hirai, Toyohiro .
FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 4
[40]   Multi-label annotation of text reports from computed tomography of the chest, abdomen, and pelvis using deep learning [J].
Vincent M. D’Anniballe ;
Fakrul Islam Tushar ;
Khrystyna Faryna ;
Songyue Han ;
Maciej A. Mazurowski ;
Geoffrey D. Rubin ;
Joseph Y. Lo .
BMC Medical Informatics and Decision Making, 22