AUTOMATED 5-YEAR MORTALITY PREDICTION USING DEEP LEARNING AND RADIOMICS FEATURES FROM CHEST COMPUTED TOMOGRAPHY

被引:0
作者
Carneiro, Gustavo [1 ]
Oakden-Rayner, Luke [2 ]
Bradley, Andrew P. [3 ]
Nascimento, Jacinto [4 ]
Palmer, Lyle [4 ]
机构
[1] Univ Adelaide, Australian Ctr Visual Technol, Adelaide, SA, Australia
[2] Univ Adelaide, Sch Publ Hlth, Adelaide, SA, Australia
[3] Univ Queensland, Sch ITEE, Brisbane, Qld, Australia
[4] Inst Super Tecn, Inst Syst & Robot, Lisbon, Portugal
来源
2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017) | 2017年
基金
澳大利亚研究理事会;
关键词
deep learning; radiomics; feature learning; hand-designed features; computed tomography; five-year mortality; CT;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In this paper, we propose new prognostic methods that predict 5-year mortality in elderly individuals using chest computed tomography (CT). The methods consist of a classifier that performs this prediction using a set of features extracted from the CT image and segmentation maps of multiple anatomic structures. We explore two approaches: 1) a unified framework based on two state-of-the-art deep learning models extended to 3-D inputs, where features and classifier are automatically learned in a single optimisation process; and 2) a multi-stage framework based on the design and selection and extraction of hand-crafted radiomics features, followed by the classifier learning process. Experimental results, based on a dataset of 48 annotated chest CTs, show that the deep learning models produces a mean 5-year mortality prediction AUC in [68.8%,69.8%] and accuracy in [64.5%,66.5%], while radiomics produces a mean AUC of 64.6% and accuracy of 64.6%. The successful development of the proposed models has the potential to make a profound impact in preventive and personalised healthcare.
引用
收藏
页码:130 / 134
页数:5
相关论文
共 50 条
[21]   Automated segmentation of liver and hepatic vessels on portal venous phase computed tomography images using a deep learning algorithm [J].
Li, Shengwei ;
Li, Xiao-Guang ;
Zhou, Fanyu ;
Zhang, Yumeng ;
Bie, Zhixin ;
Cheng, Lin ;
Peng, Jinzhao ;
Li, Bin .
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2024, 25 (08)
[22]   A deep learning integrated radiomics model for identification of coronavirus disease 2019 using computed tomography [J].
Zhang, Xiaoguo ;
Wang, Dawei ;
Shao, Jiang ;
Tian, Song ;
Tan, Weixiong ;
Ma, Yan ;
Xu, Qingnan ;
Ma, Xiaoman ;
Li, Dasheng ;
Chai, Jun ;
Wang, Dingjun ;
Liu, Wenwen ;
Lin, Lingbo ;
Wu, Jiangfen ;
Xia, Chen ;
Zhang, Zhongfa .
SCIENTIFIC REPORTS, 2021, 11 (01)
[23]   Multi-classifier-based identification of COVID-19 from chest computed tomography using generalizable and interpretable radiomics features [J].
Wang, Lu ;
Kelly, Brendan ;
Lee, Edward H. ;
Wang, Hongmei ;
Zheng, Jimmy ;
Zhang, Wei ;
Halabi, Safwan ;
Liu, Jining ;
Tian, Yulong ;
Han, Baoqin ;
Huang, Chuanbin ;
Yeom, Kristen W. ;
Deng, Kexue ;
Song, Jiangdian .
EUROPEAN JOURNAL OF RADIOLOGY, 2021, 136
[24]   Automated Lung Segmentation on Chest Computed Tomography Images with Extensive Lung Parenchymal Abnormalities Using a Deep Neural Network [J].
Yoo, Seung-Jin ;
Yoon, Soon Ho ;
Lee, Jong Hyuk ;
Kim, Ki Hwan ;
Choi, Hyoung In ;
Park, Sang Joon ;
Goo, Jin Mo .
KOREAN JOURNAL OF RADIOLOGY, 2021, 22 (03) :476-488
[25]   Liver segmentation from computed tomography images using cascade deep learning [J].
Araujo, Jose Denes Lima ;
da Cruz, Luana Batista ;
Diniz, Joao Otavio Bandeira ;
Ferreira, Jonnison Lima ;
Silva, Aristofanes Correa ;
de Paiva, Anselmo Cardoso ;
Gattass, Marcelo .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140
[26]   Evaluation of human epidermal growth factor receptor 2 status of breast cancer using preoperative multidetector computed tomography with deep learning and handcrafted radiomics features [J].
Xiaojun Yang ;
Lei Wu ;
Ke Zhao ;
Weitao Ye ;
Weixiao Liu ;
Yingyi Wang ;
Jiao Li ;
Hanxiao Li ;
Xiaomei Huang ;
Wen Zhang ;
Yanqi Huang ;
Xin Chen ;
Su Yao ;
Zaiyi Liu ;
Changhong Liang .
Chinese Journal of Cancer Research, 2020, 32 (02) :175-189
[27]   An automated deep learning based pancreatic tumor diagnosis and classification model using computed tomography images [J].
Lakkshmanan, Ajanthaa ;
Ananth, C. Anbu ;
Tiroumalmouroughane, S. .
INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2022, 15 (03) :454-470
[28]   Evaluation of human epidermal growth factor receptor 2 status of breast cancer using preoperative multidetector computed tomography with deep learning and handcrafted radiomics features [J].
Yang, Xiaojun ;
Wu, Lei ;
Zhao, Ke ;
Ye, Weitao ;
Liu, Weixiao ;
Wang, Yingyi ;
Li, Jiao ;
Li, Hanxiao ;
Huang, Xiaomei ;
Zhang, Wen ;
Huang, Yanqi ;
Chen, Xin ;
Yao, Su ;
Liu, Zaiyi ;
Liang, Changhong .
CHINESE JOURNAL OF CANCER RESEARCH, 2020, 32 (02) :175-+
[29]   Validation of a Whole Heart Segmentation from Computed Tomography Imaging Using a Deep-Learning Approach [J].
Sharobeem, Sam ;
Le Breton, Herve ;
Lalys, Florent ;
Lederlin, Mathieu ;
Lagorce, Clement ;
Bedossa, Marc ;
Boulmier, Dominique ;
Leurent, Guillaume ;
Haigron, Pascal ;
Auffret, Vincent .
JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH, 2022, 15 (02) :427-437
[30]   Using deep learning to distinguish malignant from benign parotid tumors on plain computed tomography images [J].
Hu, Ziyang ;
Wang, Baixin ;
Pan, Xiao ;
Cao, Dantong ;
Gao, Antian ;
Yang, Xudong ;
Chen, Ying ;
Lin, Zitong .
FRONTIERS IN ONCOLOGY, 2022, 12