Some characterizations of anti-invariant submanifolds of trans-sasakian manifolds

被引:0
作者
Sarkar, A. [1 ]
Bhakta, Pradip [1 ]
Sen, Matilal [2 ]
机构
[1] Univ Kalyani, Dept Math, Kalyani 741235, W Bengal, India
[2] Saldiha Coll Saldiha, Dept Math, Bankura 722173, W Bengal, India
关键词
Trans-Sasakian manifolds; second fundamental form; recurrent; anti-invariant submanifold; totally geodesic; totally umbilical; LEGENDRE CURVES; CONTACT;
D O I
10.1142/S1793557121501679
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of this paper is to study anti-invariant submanifolds of trans-Sasakian manifolds. We characterize such submanifolds on the basis of parallelism, semi-parallelism and pseudo parallelism of the second fundamental form of the submanifolds. We also characterize totally umbilical anti-invariant submanifolds of trans-Sasakian manifolds. Existence of Legendre curves on such submanifolds has been analyzed. Whether an anti-invariant submanifold of a trans-Sasakian manifold inherits local symmetry from ambient space is investigated here. Nature of Ricci soliton on anti-invariant submanifolds of trans-Sasakian manifolds has been characterized.
引用
收藏
页数:15
相关论文
共 49 条
[31]   Conformally-projectively flat trans-Sasakian statistical manifolds [J].
Kazan, Ahmet .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 535
[32]   SOME CURVATURE PROPERTIES OF TRANS-SASAKIAN MANIFOLDS WITH RESPECT TO GENERALIZED TANAKA WEBSTER OKUMURA CONNECTION [J].
Akbar, Ali .
JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2021, 20 (3-4) :243-250
[33]   ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS ADMITTING *-RICCI SOLITONS [J].
Haseeb, Abdul ;
Harish, H. ;
Prakasha, D. G. .
JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (01) :105-121
[34]   η-RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON δ- LORENTZIAN TRANS-SASAKIAN MANIFOLDS [J].
Siddiqi, Mohd Danish ;
Akyol, Mehmet Akif .
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (03) :529-545
[35]   Almost *-η-Ricci soliton on three-dimensional trans-Sasakian manifolds [J].
Pavithra, R. C. ;
Nagaraja, H. G. .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (10)
[36]   Warped Product Pseudo-Slant Sub anifold of Trans-Sasakian Manifolds [J].
Khan, Meraj Ali ;
Chahal, Khushwant Singh .
THAI JOURNAL OF MATHEMATICS, 2010, 8 (02) :263-273
[37]   SEMI-INVARIANT ξ⊥-SUBMANIFOLDS OF GENERALIZED QUASI-SASAKIAN MANIFOLDS [J].
Calin, Constantin ;
Crasmareanu, Mircea ;
Munteanu, Marian Ioan ;
Saltarelli, Vincenzo .
TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (06) :2053-2062
[38]   Second Order Parallel Tensor in Trans-Sasakian Manifolds and Connection with Ricci Soliton [J].
Debnath, Srabani ;
Bhattacharyya, Arindam .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2012, 33 (04) :312-316
[39]   CONFORMAL ANTI-INVARIANT RIEMANNIAN MAPS TO KAHLER MANIFOLDS [J].
Akyol, Mehmet Akif ;
Sahin, Bayram .
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (04) :187-198
[40]   Invariant Submanifolds of Sasakian Manifolds Admitting Semi-symmetric Metric Connection [J].
Anitha, B. S. ;
Bagewadi, C. S. .
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2013, 4 (01) :29-38