OVERVIEW OF PRIVACY PRESERVING TECHNOLOGIES FOR DISTRIBUTED LEDGERS

被引:2
|
作者
Kondyrev, D. O. [1 ]
机构
[1] Novosibirsk State Univ, Sobolev Inst Math, Lab Cryptog JetBrains Res, Pirogova St 1, Novosibirsk, Russia
来源
EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS | 2021年 / 9卷 / 01期
关键词
distributed ledgers; blockchain; privacy; zero-knowledge proof; homomorphic encryption; secure multi-party computation; anonymous signatures;
D O I
10.32523/2306-6172-2021-9-1-55-68
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper analyzes the privacy preserving problem for distributed ledgers. It provides an overview of technologies such as mixers, zero-knowledge proof algorithms, homomorphic encryption, secure multi-party computation, anonymous signatures, and hardware solutions. Advantages and disadvantages of each technology are identified, as well as usage samples in the existing distributed ledgers. As a result, unsolved problems and prospects for further research are formulated.
引用
收藏
页码:55 / 68
页数:14
相关论文
共 50 条
  • [31] Privacy-preserving distributed collaborative filtering
    Antoine Boutet
    Davide Frey
    Rachid Guerraoui
    Arnaud Jégou
    Anne-Marie Kermarrec
    Computing, 2016, 98 : 827 - 846
  • [32] PRIVACY PRESERVING DEEP LEARNING WITH DISTRIBUTED ENCODERS
    Zhang, Yitian
    Salehinejad, Hojjat
    Barfett, Joseph
    Colak, Errol
    Valaee, Shahrokh
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [33] Privacy preserving graph publication in a distributed environment
    Yuan, Mingxuan
    Chen, Lei
    Yu, Philip S.
    Mei, Hong
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2015, 18 (05): : 1481 - 1517
  • [34] Privacy-Preserving Distributed Kalman Filtering
    Moradi, Ashkan
    Venkategowda, Naveen K. D.
    Talebi, Sayed Pouria
    Werner, Stefan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 3074 - 3089
  • [35] Privacy-Preserving Distributed Maximum Consensus
    Venkategowda, Naveen K. D.
    Werner, Stefan
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 (27) : 1839 - 1843
  • [36] A distributed privacy preserving framework for the Smart Grid
    Wagh, Gaurav S.
    Gupta, Sahil
    Mishra, Sumita
    2020 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2020,
  • [37] DISTRIBUTED LEDGERS, ARTIFICIAL INTELLIGENCE AND THE PURPOSE OF THE CORPORATION
    Bruner, Christopher M.
    CAMBRIDGE LAW JOURNAL, 2020, 79 (03) : 431 - 458
  • [38] Privacy Preserving Extreme Learning Machine Classification Model for Distributed Systems
    Catak, Ferhat Ozgur
    Mustacoglu, Ahmet Fatih
    Topcu, Ahmet Ercan
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 313 - 316
  • [39] Verifiability for privacy-preserving computing on distributed data — a surveyVerifiability for privacy-preserving computing...T. Bontekoe et al.
    Tariq Bontekoe
    Dimka Karastoyanova
    Fatih Turkmen
    International Journal of Information Security, 2025, 24 (3)
  • [40] DAGBENCH: A Performance Evaluation Framework for DAG Distributed Ledgers
    Dong, Zhongli
    Zheng, Emma
    Lee, Young Choon
    Zomaya, Albert Y.
    2019 IEEE 12TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (IEEE CLOUD 2019), 2019, : 264 - 271