A Versatile Organic Salt Modified SnO2 Electron Transport Layer for High-Performance Perovskite Solar Cells

被引:15
|
作者
Peng, Xian [1 ]
Zhao, Shuangshuang [1 ]
Zhou, Ruonan [1 ]
Gong, Xiaoli [1 ]
Luo, Huxin [1 ]
Ouyang, Yukun [1 ]
Liu, Xingchong [1 ]
Li, Haimin [1 ]
Wang, Hanyu [1 ]
Zhuang, Jia [1 ]
机构
[1] Southwest Petr Univ, Ctr New Energy Mat & Technol, Sch New Energy & Mat, 8 Xindu Rd, Chengdu 610500, Peoples R China
关键词
electron transport layer; perovskite solar cells; SnO; (2); trigonelline hydrochloride; EFFICIENT;
D O I
10.1002/admi.202100582
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Interface engineering has been demonstrated to be effective in suppressing the defect-related carrier recombination loss and optimizing the energy level between SnO2 electron transport layer and mixed-cation perovskite to further improve the performance of perovskite solar cells (PSCs). Herein, a versatile organic salt, trigonelline hydrochloride (TH), is selected to modify the SnO2/perovskite interface. TH molecule plays a multifunctional role at the interface: (1) -COOH and pyridine cation can passivate the interface defects by esterification and electrostatic interaction, respectively. (2) Cl- plays a vital part in the improvement of perovskite crystallization. (3) Dipole effect can move the energy level of SnO2 resulting in optimized band alignment to more efficient electron extraction. The effects of TH at the interface are revealed by density functional theory calculations, surface chemical analyses, and energy level investigations. As a consequence, the PSCs with TH-modified SnO2 (SnO2-TH) exhibit best power conversion efficiency of 21.23%, compared to 19.59% for the reference devices, which mainly results from an enhanced open-circuit voltage (V-oc) from 1.098 V to 1.145 V. Moreover, the humidity stability of the non-encapsulated devices is also significantly improved after introducing TH to the interface.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Regulation of SnO2 Electron Transport Layers for Perovskite Solar Cells
    Cui Yupeng
    Gong Jue
    Liu Mingzhen
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (05)
  • [32] Rational tuning of SnO2 electron transport layer grown by atomic layer deposition for performance improvement of perovskite solar cells
    Shin, Seungha
    Kim, Yeongchan
    Park, Sungho
    Bae, Young Hwan
    Noh, Jin-Seo
    SOLAR ENERGY, 2024, 277
  • [33] High-Performance Planar Perovskite Solar Cells with a Reduced Energy Barrier and Enhanced Charge Extraction via a Na2WO4-Modified SnO2 Electron Transport Layer
    Xiao, Bo
    Li, Xin
    Yi, Zijun
    Luo, Yubo
    Jiang, Qinghui
    Yang, Junyou
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (06) : 7962 - 7971
  • [34] High-performance metal-oxide-free perovskite solar cells based on organic electron transport layer and cathode
    Liu, Zhihai
    Xie, Xiaoyin
    Liu, Guanchen
    Lee, Eun-Cheol
    ORGANIC ELECTRONICS, 2019, 64 : 195 - 201
  • [35] Modified SnO2 Electron Transport Layer by One-Step Doping with Histidine in Perovskite Solar Cells
    Dai, Mengjie
    Xing, Wenchao
    Zhang, Yinfeng
    Zhang, Lun
    Niu, Pujun
    Wen, Ziying
    Shan, Shengquan
    Lyu, Mei
    Zhu, Jun
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2024, 221 (16):
  • [36] Boosting performance of perovskite solar cells with Graphene quantum dots decorated SnO2 electron transport layers
    Pang, Shangzheng
    Zhang, Chunfu
    Zhang, Hairong
    Dong, Hang
    Chen, Dazheng
    Zhu, Weidong
    Xi, He
    Chang, Jingjing
    Lin, Zhenhua
    Zhang, Jincheng
    Hao, Yue
    APPLIED SURFACE SCIENCE, 2020, 507
  • [37] Polyhydroxy compound modifying SnO2 for high-performance and stable perovskite solar cells
    Jia, Xiangrui
    He, Zhengyan
    Geng, Quanming
    Hu, Yanqiang
    Yao, Changlin
    Gao, Yushuang
    Yang, Shuo
    Zhang, Shufang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 656
  • [38] Investigate of TiO2 and SnO2 as Electron Transport Layer for Perovskite Solar Cells
    Assi, Ahmed A.
    Saleh, Wasan R.
    Mohajerani, Ezzedin
    8TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY (ICAST 2020), 2020, 2290
  • [39] Synergetic effect of organic metal compound modified SnO2 in high performance perovskite solar cells
    Wu, Zhixing
    Feng, Zhiying
    Hua, Yikun
    Weng, Chaocang
    Chen, Xiaohong
    Huang, Sumei
    SOLAR ENERGY, 2022, 234 : 170 - 178
  • [40] Precursor Engineering of the Electron Transport Layer for Application in High-Performance Perovskite Solar Cells
    Lin, Zhichao
    Zhang, Wenqi
    Cai, Qingbin
    Xu, Xiangning
    Dong, Hongye
    Mu, Cheng
    Zhang, Jian-Ping
    ADVANCED SCIENCE, 2021, 8 (22)