A Versatile Organic Salt Modified SnO2 Electron Transport Layer for High-Performance Perovskite Solar Cells

被引:15
|
作者
Peng, Xian [1 ]
Zhao, Shuangshuang [1 ]
Zhou, Ruonan [1 ]
Gong, Xiaoli [1 ]
Luo, Huxin [1 ]
Ouyang, Yukun [1 ]
Liu, Xingchong [1 ]
Li, Haimin [1 ]
Wang, Hanyu [1 ]
Zhuang, Jia [1 ]
机构
[1] Southwest Petr Univ, Ctr New Energy Mat & Technol, Sch New Energy & Mat, 8 Xindu Rd, Chengdu 610500, Peoples R China
关键词
electron transport layer; perovskite solar cells; SnO; (2); trigonelline hydrochloride; EFFICIENT;
D O I
10.1002/admi.202100582
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Interface engineering has been demonstrated to be effective in suppressing the defect-related carrier recombination loss and optimizing the energy level between SnO2 electron transport layer and mixed-cation perovskite to further improve the performance of perovskite solar cells (PSCs). Herein, a versatile organic salt, trigonelline hydrochloride (TH), is selected to modify the SnO2/perovskite interface. TH molecule plays a multifunctional role at the interface: (1) -COOH and pyridine cation can passivate the interface defects by esterification and electrostatic interaction, respectively. (2) Cl- plays a vital part in the improvement of perovskite crystallization. (3) Dipole effect can move the energy level of SnO2 resulting in optimized band alignment to more efficient electron extraction. The effects of TH at the interface are revealed by density functional theory calculations, surface chemical analyses, and energy level investigations. As a consequence, the PSCs with TH-modified SnO2 (SnO2-TH) exhibit best power conversion efficiency of 21.23%, compared to 19.59% for the reference devices, which mainly results from an enhanced open-circuit voltage (V-oc) from 1.098 V to 1.145 V. Moreover, the humidity stability of the non-encapsulated devices is also significantly improved after introducing TH to the interface.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Enhanced performance of planar perovskite solar cells by doping the SnO2 electron transport layer with guanidinium chloride
    Ye, Jiajiu
    Li, Yuze
    Medjahed, Asma Aicha
    Pouget, Stephanie
    Aldakov, Dmitry
    Liu, Yueli
    Reiss, Peter
    FRONTIERS IN MATERIALS, 2023, 10
  • [32] Impact of Substrate on the SnO2 Electron Transport Layers and the Perovskite Solar Cells Performance
    Ulfa, Maria
    Budiawan, Widhya
    Bin Rus, Yandi
    Milana, Phutri
    Nursam, Natalita Maulani
    2024 INTERNATIONAL CONFERENCE ON RADAR, ANTENNA, MICROWAVE, ELECTRONICS, AND TELECOMMUNICATIONS, ICRAMET 2024, 2024, : 125 - 129
  • [33] Fullerene derivative anchored SnO2 for high-performance perovskite solar cells
    Liu, Kuan
    Chen, Shuang
    Wu, Jionghua
    Zhang, Huiyin
    Qin, Minchao
    Lu, Xinhui
    Tu, Yingfeng
    Meng, Qingbo
    Zhan, Xiaowei
    ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (12) : 3463 - 3471
  • [34] Effect of Bilayer SnO2 Electron Transport Layer on the Interfacial Charge Transport in Perovskite Solar Cells
    Luo Yuan
    Zhang Gui-Lin
    Ma Shu-Peng
    Zhu Cong-Tan
    Chen Tian
    Zhang Lin
    Zhu Liu
    Guo Xue-Yi
    Yang Ying
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2022, 38 (05) : 850 - 860
  • [35] Synergetic Optimization of Upper and Lower Surfaces of the SnO2 Electron Transport Layer for High-Performance n-i-p Perovskite Solar Cells
    Xu, Zhengjie
    Lou, Qiang
    Chen, Jiahao
    Xu, Xinxin
    Luo, Shiqiang
    Nie, Zanxiang
    Zhang, Shengdong
    Zhou, Hang
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (26) : 34377 - 34385
  • [36] Spray-coated SnO2 electron transport layer with high uniformity for planar perovskite solar cells
    Wang, Yaqin
    Yang, Lin
    Dall'Agnese, Chunxiang
    Chen, Gang
    Li, Ai-Jun
    Wang, Xiao-Feng
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2021, 15 (01) : 180 - 186
  • [37] High-efficiency perovskite solar cells with poly(vinylpyrrolidone)-doped SnO2 as an electron transport layer
    Zhang, Meiying
    Wu, Fengmin
    Chi, Dan
    Shi, Keli
    Huang, Shihua
    MATERIALS ADVANCES, 2020, 1 (04): : 617 - 624
  • [38] Spray-coated SnO2 electron transport layer with high uniformity for planar perovskite solar cells
    Yaqin Wang
    Lin Yang
    Chunxiang Dall’Agnese
    Gang Chen
    Ai-Jun Li
    Xiao-Feng Wang
    Frontiers of Chemical Science and Engineering, 2021, 15 : 180 - 186
  • [39] Review on Surface Modification of SnO2 Electron Transport Layer for High-Efficiency Perovskite Solar Cells
    Huy, Vo Pham Hoang
    Bark, Chung-Wung
    APPLIED SCIENCES-BASEL, 2023, 13 (19):
  • [40] Porphyrin-Modified SnO2 Electron Transport Layer for Efficient and Stable Inverted Organic Solar Cells
    Wu, Jifa
    Li, Yumeng
    Tang, Feng
    Guo, Yinchun
    Wu, Hanping
    Yuan, Lin
    Liu, Guoqiang
    He, Zhicai
    Peng, Xiaobin
    ADVANCED FUNCTIONAL MATERIALS, 2025,