Tritium recovery in ITER by radiative plasma terminations

被引:27
|
作者
Whyte, DG
Davis, JW
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] Univ Toronto, Inst Aerosp Studies, N York, ON M3H 5T6, Canada
关键词
tritium; desorption; hydrogen inventory; ablation;
D O I
10.1016/j.jnucmat.2004.10.134
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Planned radiative plasma terminations are examined as a method to recover tritium from plasma-deposited layers in the ITER tokamak. The technique exploits the high energy density of the ITER plasma, which is converted into a quasi-uniform radiation pulse by massive impurity injection that benignly terminates the plasma discharge. The radiation pulse transiently heats all plasma-viewing surfaces in order to desorb the tritium, which is released into the vessel and recovered by pumping. Calculations indicate significant tritium removal at reduced plasma current, similar to 6-10 MA, indicating the possibility of routine T recovery during the current rampdown phase of each discharge or during low current tritium recovery discharges. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:560 / 564
页数:5
相关论文
共 50 条
  • [21] A Large-Scale Prototype of a Tritium Pellet Injector for the ITER International Tokamak
    I. V. Viniar
    I. A. Krasil'nikov
    S. V. Skoblikov
    A. Ya. Lukin
    G. L. Saksaganskii
    Instruments and Experimental Techniques, 2002, 45 : 127 - 131
  • [22] Tritium retention characteristics in dust particles in JET with ITER-like wall
    Otsuka, T.
    Masuzaki, S.
    Ashikawa, N.
    Hatano, Y.
    Asakura, Y.
    Suzuki, Tatsuya
    Suzuki, Takumi
    Isobe, K.
    Hayashi, T.
    Tokitani, M.
    Oya, Y.
    Hamaguchi, D.
    Kurotaki, H.
    Sakamoto, R.
    Tanigawa, Hiroyasu
    Nakamichi, M.
    Widdowson, A.
    Rubel, M.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    NUCLEAR MATERIALS AND ENERGY, 2018, 17 : 279 - 283
  • [23] PRELIMINARY OCCUPATIONAL RADIATION EXPOSURE EVALUATION RELATED TO NET ITER TRITIUM SYSTEMS
    CIATTAGLIA, S
    SANDRI, S
    CAMBI, G
    JOURNAL OF FUSION ENERGY, 1993, 12 (1-2) : 65 - 69
  • [24] Tritium uptake in graphite tiles exposed to EAST plasma and then tritium gas
    Wu, Jing
    Yang, Zhongshi
    Ding, Fang
    Wang, Wanjing
    Luo, Guang-Nan
    Matsuyama, Masao
    FUSION ENGINEERING AND DESIGN, 2012, 87 (7-8) : 1399 - 1404
  • [25] Tritium recovery from tritiated water by electrolysis
    Bellanger, G
    Rameau, JJ
    FUSION TECHNOLOGY, 1999, 36 (03): : 296 - 308
  • [26] Tritium issues in plasma wall interactions
    Tanabe, Tetsuo
    PLASMA INTERACTION IN CONTROLLED FUSION DEVICES, 2010, 1237 : 106 - 121
  • [27] Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
    Joffrin, E.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afanasev, V
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Alarcon, T.
    Albanese, R.
    Alegre, D.
    Aleiferis, S.
    Alessi, E.
    Aleynikov, P.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V
    Sunden, E. Andersson
    Andrews, R.
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arshad, S.
    Artaud, J.
    Arter, W.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V
    Asunta, O.
    Asztalos, O.
    Auriemma, F.
    Austin, Y.
    Avotina, L.
    Axton, M.
    Ayres, C.
    Baciero, A.
    Baiao, D.
    Balboa, I
    Balden, M.
    NUCLEAR FUSION, 2019, 59 (11)
  • [28] Experience of handling beryllium, tritium and activated components from JET ITER like wall
    Widdowson, A.
    Baron-Wiechec, A.
    Batistoni, P.
    Belonohy, E.
    Coad, J. P.
    Dinca, P.
    Flammini, D.
    Fox, F.
    Heinola, K.
    Jepu, I.
    Likonen, J.
    Lilley, S.
    Lungu, C. P.
    Matthews, G. F.
    Naish, J.
    Pompilian, O.
    Porosnicu, C.
    Rubel, M.
    Villari, R.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    PHYSICA SCRIPTA, 2016, T167
  • [29] Evaluation of tritium retention in plasma facing components during JET tritium operations
    Widdowson, Anna
    Coad, J. Paul
    Zayachuk, Yevhen
    Jepu, Ionut
    Alves, Eduardo
    Catarino, Norberto
    Corregidor, Victoria
    Mayer, Matej
    Krat, Stepan
    Likonen, Jari
    Mizohata, Kenichiro
    Rowley, Chris
    Zlobinski, Miroslaw
    Rubel, Marek
    Douai, David
    Heinola, Kalle
    Wauters, Tom
    Dittrich, Laura
    Moon, Sunwoo
    Petersson, Per
    Baron-Wiechec, Aleksandra
    Avotina, Liga
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [30] Collisional-radiative simulation of impurity assimilation, radiative collapse and MHD dynamics after ITER shattered pellet injection
    Hu, D.
    Nardon, E.
    Artola, F. J.
    Lehnen, M.
    Bonfiglio, D.
    Hoelzl, M.
    Huijsmans, G. T. A.
    Lee, S. -j.
    NUCLEAR FUSION, 2023, 63 (06)