Swin-Transformer-Enabled YOLOv5 with Attention Mechanism for Small Object Detection on Satellite Images

被引:119
作者
Gong, Hang [1 ]
Mu, Tingkui [1 ]
Li, Qiuxia [1 ]
Dai, Haishan [2 ]
Li, Chunlai [3 ]
He, Zhiping [3 ]
Wang, Wenjing [1 ]
Han, Feng [1 ]
Tuniyazi, Abudusalamu [1 ]
Li, Haoyang [1 ]
Lang, Xuechan [1 ]
Li, Zhiyuan [1 ]
Wang, Bin [1 ]
机构
[1] Xi An Jiao Tong Univ, Res Ctr Space Opt & Astron, Sch Phys, MOE Key Lab Nonequilibrium Synth & Modulat Conden, Xian 710049, Peoples R China
[2] Shanghai Acad Spaceflight Technol, Shanghai Inst Satellite Engn, Shanghai 201109, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China
基金
中国国家自然科学基金;
关键词
satellite images; object detection; self-attention mechanism; Swin transformer; deep learning; CLASSIFICATION;
D O I
10.3390/rs14122861
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Object detection has made tremendous progress in natural images over the last decade. However, the results are hardly satisfactory when the natural image object detection algorithm is directly applied to satellite images. This is due to the intrinsic differences in the scale and orientation of objects generated by the bird's-eye perspective of satellite photographs. Moreover, the background of satellite images is complex and the object area is small; as a result, small objects tend to be missing due to the challenge of feature extraction. Dense objects overlap and occlusion also affects the detection performance. Although the self-attention mechanism was introduced to detect small objects, the computational complexity increased with the image's resolution. We modified the general one-stage detector YOLOv5 to adapt the satellite images to resolve the above problems. First, new feature fusion layers and a prediction head are added from the shallow layer for small object detection for the first time because it can maximally preserve the feature information. Second, the original convolutional prediction heads are replaced with Swin Transformer Prediction Heads (SPHs) for the first time. SPH represents an advanced self-attention mechanism whose shifted window design can reduce the computational complexity to linearity. Finally, Normalization-based Attention Modules (NAMs) are integrated into YOLOv5 to improve attention performance in a normalized way. The improved YOLOv5 is termed SPH-YOLOv5. It is evaluated on the NWPU-VHR10 dataset and DOTA dataset, which are widely used for satellite image object detection evaluations. Compared with the basal YOLOv5, SPH-YOLOv5 improves the mean Average Precision (mAP) by 0.071 on the DOTA dataset.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Improved Lightweight YOLOv5 Using Attention Mechanism for Satellite Components Recognition
    Li, Cong
    Zhao, Gaopeng
    Gu, Dongqing
    Wang, Zebin
    IEEE SENSORS JOURNAL, 2023, 23 (01) : 514 - 526
  • [22] Driver Attention Detection Based on Improved YOLOv5
    Wang, Zhongzhou
    Yao, Keming
    Guo, Fuao
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [23] SF-YOLOv5: Improved YOLOv5 with swin transformer and fusion-concat method for multi-UAV detection
    Ma, Jun
    Wang, Xiao
    Xu, Cuifeng
    Ling, Jing
    MEASUREMENT & CONTROL, 2023, 56 (7-8) : 1436 - 1445
  • [24] Improved YOLOv7 models based on modulated deformable convolution and swin transformer for object detection in fisheye images
    Zhou, Jie
    Yang, Degang
    Song, Tingting
    Ye, Yichen
    Zhang, Xin
    Song, Yingze
    IMAGE AND VISION COMPUTING, 2024, 144
  • [25] Application of YOLOv5 Based on Attention Mechanism and Receptive Field in Identifying Defects of Thangka Images
    Li, Yubo
    Fan, Yao
    Wang, Shuaishuai
    Bai, Jianxian
    Li, Keying
    IEEE ACCESS, 2022, 10 : 81597 - 81611
  • [26] An Improved YOLOv5 Crack Detection Method Combined With Transformer
    Xiang, Xuezhi
    Wang, Zhiyuan
    Qiao, Yulong
    IEEE SENSORS JOURNAL, 2022, 22 (14) : 14328 - 14335
  • [27] A YOLOv5 Baseline for Underwater Object Detection
    Wang, Hao
    Sun, Shixin
    Wu, Xiaohui
    Li, Li
    Zhang, Hao
    Li, Mingjie
    Ren, Peng
    OCEANS 2021: SAN DIEGO - PORTO, 2021,
  • [28] An improved YOLOv5 for object detection in visible and thermal infrared images based on contrastive learning
    Tu, Xiaoguang
    Yuan, Zihao
    Liu, Bokai
    Liu, Jianhua
    Hu, Yan
    Hua, Houqiang
    Wei, Lin
    FRONTIERS IN PHYSICS, 2023, 11
  • [29] An Improved YOLOv5s Algorithm for Object Detection with an Attention Mechanism
    Jiang, Tingyao
    Li, Cheng
    Yang, Ming
    Wang, Zilong
    ELECTRONICS, 2022, 11 (16)
  • [30] Object Detection of Individual Mangrove Based on Improved YOLOv5
    Ma Yongkang
    Liu Hua
    Ling Chengxing
    Zhao Feng
    Jiang Yi
    Zhang Yutong
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (18)