Risk measurement and risk-averse control of partially observable discrete-time Markov systems

被引:10
|
作者
Fan, Jingnan [1 ]
Ruszczynski, Andrzej [2 ]
机构
[1] Rutgers State Univ, RUTCOR, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Dept Management Sci & Informat Syst, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Partially observable Markov processes; Dynamic risk measures; Time consistency; Dynamic programming; DECISION-PROCESSES; STOCHASTIC-DOMINANCE; SENSITIVE CONTROL; VARIANCE; OPTIMIZATION;
D O I
10.1007/s00186-018-0633-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider risk measurement in controlled partially observable Markov processes in discrete time. We introduce a new concept of conditional stochastic time consistency and we derive the structure of risk measures enjoying this property. We prove that they can be represented by a collection of static law invariant risk measures on the space of function of the observable part of the state. We also derive the corresponding dynamic programming equations. Finally we illustrate the results on a machine deterioration problem.
引用
收藏
页码:161 / 184
页数:24
相关论文
共 50 条
  • [21] Classical Risk-Averse Control for a Finite-Horizon Borel Model
    Chapman, Margaret P.
    Smith, Kevin M.
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 1525 - 1530
  • [22] Robust risk-averse unit commitment with solar PV systems
    Raygani, Saeid Veysi
    Forbes, Michael
    Martin, Daniel
    IET RENEWABLE POWER GENERATION, 2020, 14 (15) : 2966 - 2975
  • [23] Risk-Averse Model Predictive Operation Control of Islanded Microgrids
    Hans, Christian A.
    Sopasakis, Pantelis
    Raisch, Jorg
    Reincke-Collon, Carsten
    Patrinos, Panagiotis
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (06) : 2136 - 2151
  • [24] Optimal control of discrete-time uncertain systems with imperfect measurement
    Moitié, R
    Quincampoix, M
    Veliov, VM
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (11) : 1909 - 1914
  • [25] Partially observed optimal stopping problem for discrete-time Markov processes
    Benoîte de Saporta
    François Dufour
    Christophe Nivot
    4OR, 2017, 15 : 277 - 302
  • [26] Risk-Averse Preventive Voltage Control of AC/DC Power Systems Including Wind Power Generation
    Rabiee, Abbas
    Soroudi, Alireza
    Keane, Andrew
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2015, 6 (04) : 1494 - 1505
  • [27] Partially observed optimal stopping problem for discrete-time Markov processes
    de Saporta, Benoite
    Dufour, Francois
    Nivot, Christophe
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2017, 15 (03): : 277 - 302
  • [28] Partially observed non-linear risk-sensitive optimal stopping control for non-linear discrete-time systems
    Ford, Jason J.
    SYSTEMS & CONTROL LETTERS, 2006, 55 (09) : 770 - 776
  • [29] Time-consistent approximations of risk-averse multistage stochastic optimization problems
    Tsvetan Asamov
    Andrzej Ruszczyński
    Mathematical Programming, 2015, 153 : 459 - 493
  • [30] Discrete-time risk measures with time consistency
    Sun Jian
    Wang Yan
    Zhao Ze-bin
    Proceedings of the 2006 International Conference on Management Science & Engineering (13th), Vols 1-3, 2006, : 375 - 380