Some applications of the mirror theorem for toric stacks

被引:0
作者
Coates, Tom [1 ]
Corti, Alessio [1 ]
Iritani, Hiroshi [2 ]
Tseng, Hsian-Hua [3 ]
机构
[1] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
[2] Kyoto Univ, Dept Math, Grad Sch Sci, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan
[3] Ohio State Univ, Dept Math, 100 Math Tower,231 West 18th AVE, Columbus, OH 43210 USA
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
GROMOV-WITTEN INVARIANTS; QUANTUM RIEMANN-ROCH; ORBIFOLD CHOW RING; COHOMOLOGY; LEFSCHETZ;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We use the mirror theorem for toric Deligne-Mumford stacks, proved recently by the authors and by Cheong-Ciocan-Fontanine-Kim, to compute genus-zero Gromov-Witten invariants of a number of toric orbifolds and gerbes. We prove a mirror theorem for a class of complete intersections in toric Deligne-Mumford stacks, and use this to compute genus-zero Gromov-Witten invariants of an orbifold hypersurface.
引用
收藏
页码:767 / 802
页数:36
相关论文
共 40 条
[31]   THE ORBIFOLD COHOMOLOGY RING OF SIMPLICIAL TORIC STACK BUNDLES [J].
Jiang, Yunfeng .
ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (02) :493-514
[32]   Multi-point virtual structure constants and mirror computation of CP2-model [J].
Jinzenji, Masao ;
Shimizu, Masahide .
COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2013, 7 (03) :411-468
[33]   Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee [J].
Kim, B ;
Kresch, A ;
Pantev, T .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 179 (1-2) :127-136
[34]  
Liu Chiu-Chu Melissa, 2013, Adv. Lect. Math. (ALM), V25, P353
[35]  
Pandharipande R, 1998, ASTERISQUE, P307
[36]   A Reconstruction theorem for genus zero Gromov-Witten invariants of stacks [J].
Rose, Michael A. .
AMERICAN JOURNAL OF MATHEMATICS, 2008, 130 (05) :1427-1443
[37]   Orbifold quantum Riemann-Roch, Lefschetz and Serre [J].
Tseng, Hsian-Hua .
GEOMETRY & TOPOLOGY, 2010, 14 (01) :1-81
[38]  
Woodward Chris T., 2012, ARXIV12041765MATHAG
[39]  
Woodward Chris T., 2014, ARXIV14085869MATHAG
[40]  
Woodward Chris T., 2014, ARXIV14085864MATHAG