Some applications of the mirror theorem for toric stacks

被引:0
作者
Coates, Tom [1 ]
Corti, Alessio [1 ]
Iritani, Hiroshi [2 ]
Tseng, Hsian-Hua [3 ]
机构
[1] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
[2] Kyoto Univ, Dept Math, Grad Sch Sci, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan
[3] Ohio State Univ, Dept Math, 100 Math Tower,231 West 18th AVE, Columbus, OH 43210 USA
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
GROMOV-WITTEN INVARIANTS; QUANTUM RIEMANN-ROCH; ORBIFOLD CHOW RING; COHOMOLOGY; LEFSCHETZ;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We use the mirror theorem for toric Deligne-Mumford stacks, proved recently by the authors and by Cheong-Ciocan-Fontanine-Kim, to compute genus-zero Gromov-Witten invariants of a number of toric orbifolds and gerbes. We prove a mirror theorem for a class of complete intersections in toric Deligne-Mumford stacks, and use this to compute genus-zero Gromov-Witten invariants of an orbifold hypersurface.
引用
收藏
页码:767 / 802
页数:36
相关论文
共 40 条
[1]  
Abramovich D, 2008, AM J MATH, V130, P1337
[2]  
[Anonymous], 2004, FROBENIUS MANIFOLDS, VE36, P91
[3]   Quantum periods, I: Semi-infinite variations of Hodge structures [J].
Barannikov, S .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2001, 2001 (23) :1243-1264
[4]  
Barannikov Serguei, 2000, ARXIVMATH0010157MATH
[5]   The orbifold Chow ring of toric Deligne-Mumford stacks [J].
Borisov, LA ;
Chen, L ;
Smith, GG .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (01) :193-215
[6]   Using stacks to impose tangency conditions on curves [J].
Cadman, Charles .
AMERICAN JOURNAL OF MATHEMATICS, 2007, 129 (02) :405-427
[7]  
Chen W., 2002, Contemp. Math, V310, P25, DOI [10.1090/conm/310/05398, DOI 10.1090/CONM/310/05398]
[8]   A new cohomology theory of orbifold [J].
Chen, WM ;
Ruan, YB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 248 (01) :1-31
[9]  
Cheong Daewoong, 2014, ARXIV14057160MATHAG
[10]  
Ciocan-Fontanine Ionut, 2013, ARXIV13047056MATHAG