An integrated autoencoder-based filter for sparse big data

被引:3
作者
Peng, Wei [1 ]
Xin, Baogui [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Econ & Management, Qingdao, Peoples R China
关键词
Sparse big data; integrated autoencoder (IAE); data sparsity; prediction; filter; STACKED AUTOENCODER; DEEP; PREDICTION; NETWORK; MODEL;
D O I
10.1080/23307706.2020.1759466
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a novel filter for sparse big data, called an integrated autoencoder (IAE), which utilises auxiliary information to mitigate data sparsity. The proposed model achieves an appropriate balance between prediction accuracy, convergence speed, and complexity. We implement experiments on a GPS trajectory dataset, and the results demonstrate that the IAE is more accurate and robust than some state-of-the-art methods.
引用
收藏
页码:260 / 268
页数:9
相关论文
共 50 条
  • [41] Deep Stacked Autoencoder-Based Long-Term Spectrum Prediction Using Real-World Data
    Pan, Guangliang
    Wu, Qihui
    Ding, Guoru
    Wang, Wei
    Li, Jie
    Xu, Fuyuan
    Zhou, Bo
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2023, 9 (03) : 534 - 548
  • [42] Exploiting Autoencoder-Based Anomaly Detection to Enhance Cybersecurity in Power Grids
    Harrou, Fouzi
    Bouyeddou, Benamar
    Dairi, Abdelkader
    Sun, Ying
    FUTURE INTERNET, 2024, 16 (06)
  • [43] AUTOENCODER-BASED ANOMALY DETECTION IN INDUSTRIAL X-RAY IMAGES
    Lindgren, Erik
    Zach, Christopher
    PROCEEDINGS OF 2021 48TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION (QNDE2021), 2021,
  • [44] Autoencoder-Based Error Correction Coding for One-Bit Quantization
    Balevi, Eren
    Andrews, Jeffrey G.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (06) : 3440 - 3451
  • [45] Arrhythmia Classification Algorithm based on Sparse Autoencoder
    Liang, Mengnan
    Jiang, Aimin
    Liu, Xiaofeng
    Kwan, Hon Keung
    Zhu, Yanping
    2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 1333 - 1337
  • [46] A Novel Time Series Prediction Model Based on Deep Sparse Autoencoder
    Xu, Meiling
    Dong, Yaguo
    Li, Zhan
    Han, Min
    Xing, Tong
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 1678 - 1682
  • [47] Multi-objective data-ensemble wind speed forecasting model with stacked sparse autoencoder and adaptive decomposition-based error correction
    Liu, Hui
    Chen, Chao
    APPLIED ENERGY, 2019, 254
  • [48] A hybrid model of CNN and LSTM autoencoder-based short-term PV power generation forecasting
    Ibrahim, Mohamed Sayed
    Gharghory, Sawsan Morkos
    Kamal, Hanan Ahmed
    ELECTRICAL ENGINEERING, 2024, 106 (04) : 4239 - 4255
  • [49] Deformable convolutional autoencoder-based feature selection and recognition for acoustic emission monitoring in laser shock peening
    Qin, Rui
    Zhang, Zhifen
    Huang, Jing
    Su, Yu
    Wen, Guangrui
    He, Weifeng
    Chen, Xuefeng
    WELDING IN THE WORLD, 2025, : 1241 - 1254
  • [50] User-Centric Online Gossip Training for Autoencoder-Based CSI Feedback
    Guo, Jiajia
    Zuo, Yiping
    Wen, Chao-Kai
    Jin, Shi
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2022, 16 (03) : 559 - 572