An integrated autoencoder-based filter for sparse big data

被引:3
作者
Peng, Wei [1 ]
Xin, Baogui [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Econ & Management, Qingdao, Peoples R China
关键词
Sparse big data; integrated autoencoder (IAE); data sparsity; prediction; filter; STACKED AUTOENCODER; DEEP; PREDICTION; NETWORK; MODEL;
D O I
10.1080/23307706.2020.1759466
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a novel filter for sparse big data, called an integrated autoencoder (IAE), which utilises auxiliary information to mitigate data sparsity. The proposed model achieves an appropriate balance between prediction accuracy, convergence speed, and complexity. We implement experiments on a GPS trajectory dataset, and the results demonstrate that the IAE is more accurate and robust than some state-of-the-art methods.
引用
收藏
页码:260 / 268
页数:9
相关论文
共 50 条
  • [31] APAD: Autoencoder-based Payload Anomaly Detection for industrial IoE
    Kim, SungJin
    Jo, WooYeon
    Shon, Taeshik
    APPLIED SOFT COMPUTING, 2020, 88
  • [32] Inferring Potential CircRNA-Disease Associations via Deep Autoencoder-Based Classification
    Deepthi, K.
    Jereesh, A. S.
    MOLECULAR DIAGNOSIS & THERAPY, 2021, 25 (01) : 87 - 97
  • [33] An Autoencoder-Based Learning Method for Wireless Communication Protocol Identification
    Ren, Jie
    Wang, Zulin
    Xu, Mai
    COMMUNICATIONS AND NETWORKING, CHINACOM 2017, PT I, 2018, 236 : 535 - 545
  • [34] A Stacked Autoencoder-Based miRNA Regulatory Module Detection Framework
    Yi Yang
    Yan Song
    International Journal of Computational Intelligence Systems, 2019, 12 : 822 - 832
  • [35] Autoencoder-Based System for Detecting Anomalies in Pelletizer Melt Processes
    Zhu, Mingxiang
    Zhang, Guangming
    Feng, Lihang
    Li, Xingjian
    Lv, Xiaodong
    SENSORS, 2024, 24 (22)
  • [36] A Fast Nonnegative Autoencoder-Based Approach to Latent Feature Analysis on High-Dimensional and Incomplete Data
    Bi, Fanghui
    He, Tiantian
    Luo, Xin
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (03) : 733 - 746
  • [37] A novel hybrid framework for wind speed forecasting using autoencoder-based convolutional long short-term memory network
    Kosana, Vishalteja
    Madasthu, Santhosh
    Teeparthi, Kiran
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2021, 31 (11)
  • [38] Harnessing the Adversarial Perturbation to Enhance Security in the Autoencoder-Based Communication System
    Deng, Zhixiang
    Sang, Qian
    ELECTRONICS, 2020, 9 (02)
  • [39] Autoencoder-based Condition Monitoring and Anomaly Detection Method for Rotating Machines
    Ahmad, Sabtain
    Styp-Rekowski, Kevin
    Nedelkoski, Sasho
    Kao, Odej
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 4093 - 4102
  • [40] Decentralized adaptively weighted stacked autoencoder-based incipient fault detection for nonlinear industrial processes
    Gao, Huihui
    Huang, Wenjie
    Gao, Xuejin
    Han, Honggui
    ISA TRANSACTIONS, 2023, 139 : 216 - 228