Efficient Multi-Sensor Extended Target Tracking using GM-PHD Filter

被引:0
作者
Ahrabian, Alireza [1 ]
Emambakhsh, Mehryar [2 ]
De Moraes, Marcel Sheeny [1 ]
Wallace, Andrew M. [1 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh, Midlothian, Scotland
[2] CORTEXICA VIS SYST, Madrid, Spain
来源
2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19) | 2019年
基金
英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work deals with the efficient fusion of multiple disparate sensors, namely THz radar, stereo camera and lidar for autonomous vehicles. In particular, we develop a target tracking algorithm that is object agnostic i.e. we seek to detect any potential object in the scene and track it while also preserving extended target characteristics such as length and width. To this end, we first use conventional clustering and labelling methods in order to generate consistent features from each sensor independently. The features from each sensor are then transformed into a set of bounding boxes located in both range and cross range. The bounding box parameters are then fed into the proposed efficient multi-sensor target tracking algorithm. This is achieved by modifying the Gaussian mixture-PHD filter (GM-PHD) by incorporating a set of class labels that associate a state to a set of sensors. The performance of the proposed method target tracking method is verified using both synthetic and real world data.
引用
收藏
页码:1731 / 1738
页数:8
相关论文
共 50 条
[41]   Gaussian mixture PHD filter for multi-sensor multi-target tracking with registration errors [J].
Li, Wenling ;
Jia, Yingmin ;
Du, Junping ;
Yu, Fashan .
SIGNAL PROCESSING, 2013, 93 (01) :86-99
[42]   A Labeled GM-PHD Filter for Explicitly Tracking Multiple Targets [J].
Gao, Yiyue ;
Jiang, Defu ;
Zhang, Chao ;
Guo, Su .
SENSORS, 2021, 21 (11)
[43]   Online Multi-object Visual Tracking using a GM-PHD Filter with Deep Appearance Learning [J].
Baisa, Nathanael L. .
2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
[44]   Multiple sperm tracking in microscopic videos using modified GM-PHD filter [J].
Hamed Danandeh Hesar ;
Hamid Abrishami Moghaddam ;
Amirhossein Safari ;
Poopak Eftekhari-Yazdi .
Machine Vision and Applications, 2018, 29 :433-451
[45]   Multi-sensor Interactive Multi-model PHD Filter for Maneuvering Multi-target Tracking [J].
Tian, Shurong ;
Sun, Xiaoshu ;
Sun, Xijing .
INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS II, PTS 1-3, 2013, 336-338 :200-+
[46]   Emitter group targets tracking using GM-PHD filter combined with clustering [J].
Zhu, You-Qing ;
Zhou, Shi-Lin ;
Gao, Gui .
Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2015, 37 (09) :1967-1973
[47]   Multi-sensor moving target tracking using particle filter [J].
Liu, Guocheng ;
Wang, Yongji .
2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, VOLS 1-5, 2007, :668-673
[48]   Improved GM-PHD filtering algorithm for multi-target tracking in sonar images [J].
Zhou T. ;
Zhang L. ;
Du W. ;
Han T. .
Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2020, 41 (05) :691-697
[49]   SMALL MOVING TARGET MOT TRACKING WITH GM-PHD FILTER AND ATTENTION-BASED CNN [J].
Aguilar, Camilo ;
Ortner, Mathias ;
Zerubia, Josiane .
2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
[50]   Multisensor Multi-Target Tracking Based on GM-PHD Using Out-Of-Sequence Measurements [J].
Liu, Meiqin ;
Huai, Tianyi ;
Zheng, Ronghao ;
Zhang, Senlin .
SENSORS, 2019, 19 (19)