Estimation of a semiparametric varying-coefficient partially linear errors-in-variables model

被引:88
作者
You, JH [1 ]
Chen, GM
机构
[1] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[2] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
关键词
partially linear regression model; varying-coefficient; measurement error; attenuation; local polynomial; asymptotic normality; convergence rate;
D O I
10.1016/j.jmva.2005.03.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies the estimation of a varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model [Fan and Huang, Manuscript, University of North Carolina, Chapel Hill, USA, 2002]. We focus on the case where some covariates are measured with additive errors. The usual profile least squares and local polynomial estimations lead to biased estimators of the parametric and nonparametric components, respectively, when measurement errors are ignored. By correcting the attenuation we propose a modified profile least squares estimator for the parametric component and a local polynomial estimator for the nonparametric component. We show that the former is consistent, asymptotically normal and achieves the rate in the law of the iterated logarithm, and the latter achieves the optimal strong convergence rate of the usual nonparametric regression. In addition, a consistent estimator is also developed for the error variance. These results can be used to make asymptotically valid statistical inferences. Some simulation studies are conducted to illustrate the finite sample performance of the proposed estimators. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:324 / 341
页数:18
相关论文
共 40 条
[1]   Smoothing spline models for the analysis of nested and crossed samples of curves [J].
Brumback, BA ;
Rice, JA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (443) :961-976
[2]   Local estimating equations [J].
Carroll, RJ ;
Ruppert, D ;
Welsh, AH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (441) :214-227
[3]  
Carroll RJ., 1995, MEASUREMENT ERROR NO
[4]   CONVERGENCE-RATES FOR PARAMETRIC COMPONENTS IN A PARTLY LINEAR-MODEL [J].
CHEN, H .
ANNALS OF STATISTICS, 1988, 16 (01) :136-146
[5]   A 2-STAGE SPLINE SMOOTHING METHOD FOR PARTIALLY LINEAR-MODELS [J].
CHEN, H ;
SHIAU, JJH .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1991, 27 (02) :187-201
[6]   DATA-DRIVEN EFFICIENT ESTIMATORS FOR A PARTIALLY LINEAR-MODEL [J].
CHEN, H ;
SHIAU, JJH .
ANNALS OF STATISTICS, 1994, 22 (01) :211-237
[7]  
Cheng CL, 1999, STAT REGRESSION MEAS
[8]  
CHOW YS, 1980, PROBABILITY THEORY
[9]  
Cui HJ, 1998, J MULTIVARIATE ANAL, V64, P1
[10]   SERIES ESTIMATION OF SEMILINEAR MODELS [J].
DONALD, SG ;
NEWEY, WK .
JOURNAL OF MULTIVARIATE ANALYSIS, 1994, 50 (01) :30-40