Simplifying algebra in Feynman graphs. II. Spinor helicity from the spacecone

被引:52
作者
Chalmers, G [1 ]
Siegel, W [1 ]
机构
[1] SUNY Stony Brook, Inst Theoret Phys, Stony Brook, NY 11794 USA
来源
PHYSICAL REVIEW D | 1999年 / 59卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.59.045013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Manifestly Lorentz-covariant Feynman rules are given in terms of a "scalar" field for each helicity, dramatically simplifying the calculation of amplitudes with massless particles. The spinor helicity formalism is properly identified as a null complex spacelike (not lightlike) gauge, where two massless external momenta define the reference frame. Usually, this gauge is applied only to external line factors; we extend this method to vertices and propagators by modifying the action itself using light-cone methods. [S0556-2821(98)05324-7].
引用
收藏
页数:9
相关论文
共 31 条
[1]  
Bardeen WA, 1996, PROG THEOR PHYS SUPP, P1, DOI 10.1143/PTPS.123.1
[2]   MULTIPLE BREMSSTRAHLUNG IN GAUGE-THEORIES AT HIGH-ENERGIES .2. SINGLE BREMSSTRAHLUNG [J].
BERENDS, FA ;
KLEISS, R ;
DECAUSMAECKER, P ;
GASTMANS, R ;
TROOST, W ;
WU, TT .
NUCLEAR PHYSICS B, 1982, 206 (01) :61-89
[3]   RECURSIVE CALCULATIONS FOR PROCESSES WITH N GLUONS [J].
BERENDS, FA ;
GIELE, WT .
NUCLEAR PHYSICS B, 1988, 306 (04) :759-808
[4]   ONE-LOOP N-GLUON AMPLITUDES WITH MAXIMAL HELICITY VIOLATION VIA COLLINEAR LIMITS [J].
BERN, Z ;
CHALMERS, G ;
DIXON, L ;
KOSOWER, DA .
PHYSICAL REVIEW LETTERS, 1994, 72 (14) :2134-2137
[5]   Progress in one-loop QCD computations [J].
Bern, Z ;
Dixon, L ;
Kosower, DA .
ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, 1996, 46 :109-148
[6]   TREE GRAPHS AND CLASSICAL FIELDS [J].
BOULWARE, DG ;
BROWN, LS .
PHYSICAL REVIEW, 1968, 172 (05) :1628-&
[7]   Self-dual Yang-Mills theory and one-loop maximally helicity violating multi-gluon amplitudes [J].
Cangemi, D .
NUCLEAR PHYSICS B, 1997, 484 (1-2) :521-537
[8]   Self-dual sector of QCD amplitudes [J].
Chalmers, G ;
Siegel, W .
PHYSICAL REVIEW D, 1996, 54 (12) :7628-7633
[9]   Simplifying algebra in Feynman graphs. I. Spinors [J].
Chalmers, G ;
Siegel, W .
PHYSICAL REVIEW D, 1999, 59 (04)
[10]  
CHALMERS G, UNPUB SIMPLIFYING 3