Jamming Below Upper Critical Dimension

被引:13
|
作者
Ikeda, Harukuni [1 ]
机构
[1] Univ Tokyo, Grad Sch Arts & Sci, Tokyo 1538902, Japan
基金
欧洲研究理事会;
关键词
25;
D O I
10.1103/PhysRevLett.125.038001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Extensive numerical simulations in the past decades proved that the critical exponents of the jamming of frictionless spherical particles are the same in two and three dimensions. This implies that the upper critical dimension is d(u) = 2 or lower. In this Letter, we study the jamming transition below the upper critical dimension. We investigate a quasi-one-dimensional system: disks confined in a narrow channel. We show that the system is isostatic at the jamming transition point as in the case of standard jamming transition of the bulk systems in two and three dimensions. Nevertheless, the scaling of the excess contact number shows the linear scaling. Furthermore, the gap distribution remains finite even at the jamming transition point. These results are qualitatively different from those of the bulk systems in two and three dimensions.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Possible crossover of a nonuniversal quantity at the upper critical dimension
    Galam, S
    Mauger, A
    PHYSICAL REVIEW E, 2005, 71 (03):
  • [32] Effective-dimension theory of critical phenomena above upper critical dimensions
    Zeng, Shaolong
    Szeto, Sue Ping
    Zhong, Fan
    PHYSICA SCRIPTA, 2022, 97 (12)
  • [33] Finite-size scaling above the upper critical dimension
    Wittmann, Matthew
    Young, A. P.
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [34] Topological excitations in statistical field theory at the upper critical dimension
    Marco Panero
    Antonio Smecca
    Journal of High Energy Physics, 2021
  • [35] Upper critical dimension of the Kardar-Parisi-Zhang equation
    Bhattacharjee, JK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (05): : L93 - L96
  • [36] Fisher's scaling relation above the upper critical dimension
    Kenna, R.
    Berche, B.
    EPL, 2014, 105 (02)
  • [37] Topological excitations in statistical field theory at the upper critical dimension
    Panero, Marco
    Smecca, Antonio
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (03)
  • [38] Upper critical dimension of the negative-weight percolation problem
    Melchert, O.
    Apolo, L.
    Hartmann, A. K.
    PHYSICAL REVIEW E, 2010, 81 (05):
  • [39] Scaling at quantum phase transitions above the upper critical dimension
    Langheld, Anja
    Koziol, Jan Alexander
    Adelhardt, Patrick
    Kapfer, Sebastian
    Schmidt, Kai P.
    SCIPOST PHYSICS, 2022, 13 (04):
  • [40] Upper critical dimension of the Kardar-Parisi-Zhang equation
    Lassig, M
    Kinzelbach, H
    PHYSICAL REVIEW LETTERS, 1997, 78 (05) : 903 - 906