Jamming Below Upper Critical Dimension

被引:13
|
作者
Ikeda, Harukuni [1 ]
机构
[1] Univ Tokyo, Grad Sch Arts & Sci, Tokyo 1538902, Japan
基金
欧洲研究理事会;
关键词
25;
D O I
10.1103/PhysRevLett.125.038001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Extensive numerical simulations in the past decades proved that the critical exponents of the jamming of frictionless spherical particles are the same in two and three dimensions. This implies that the upper critical dimension is d(u) = 2 or lower. In this Letter, we study the jamming transition below the upper critical dimension. We investigate a quasi-one-dimensional system: disks confined in a narrow channel. We show that the system is isostatic at the jamming transition point as in the case of standard jamming transition of the bulk systems in two and three dimensions. Nevertheless, the scaling of the excess contact number shows the linear scaling. Furthermore, the gap distribution remains finite even at the jamming transition point. These results are qualitatively different from those of the bulk systems in two and three dimensions.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Critical Exponents for Long-Range Models Below the Upper Critical Dimension
    Slade, Gordon
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 358 (01) : 343 - 436
  • [2] Mean-field behavior of the sandpile model below the upper critical dimension
    Chessa, Alessandro
    Marinari, Enzo
    Vespignani, Alessandro
    Zapperi, Stefano
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 57 (06):
  • [3] Mean-field behavior of the sandpile model below the upper critical dimension
    Chessa, A
    Marinari, E
    Vespignani, A
    Zapperi, S
    PHYSICAL REVIEW E, 1998, 57 (06): : R6241 - R6244
  • [4] Power-law bounds for critical long-range percolation below the upper-critical dimension
    Tom Hutchcroft
    Probability Theory and Related Fields, 2021, 181 : 533 - 570
  • [6] Critical Two-Point Function for Long-Range O(n) Models Below the Upper Critical Dimension
    Martin Lohmann
    Gordon Slade
    Benjamin C. Wallace
    Journal of Statistical Physics, 2017, 169 : 1132 - 1161
  • [7] Critical Two-Point Function for Long-Range O(n) Models Below the Upper Critical Dimension
    Lohmann, Martin
    Slade, Gordon
    Wallace, Benjamin C.
    JOURNAL OF STATISTICAL PHYSICS, 2017, 169 (06) : 1132 - 1161
  • [8] ON THE UPPER CRITICAL DIMENSION OF BERNOULLI PERCOLATION
    CHAYES, JT
    CHAYES, L
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 113 (01) : 27 - 48
  • [9] Hyperscaling above the upper critical dimension
    Berche, B.
    Kenna, R.
    Walter, J. -C.
    NUCLEAR PHYSICS B, 2012, 865 (01) : 115 - 132
  • [10] ON THE UPPER CRITICAL DIMENSION IN ANDERSON LOCALIZATION
    CASTELLANI, C
    DICASTRO, C
    PELITI, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (17): : 1099 - 1103