Experimental and numerical analysis of grain refinement effect on hot tearing susceptibility for Al-Mg alloys

被引:10
作者
Takai, R. [1 ,2 ]
Endo, N. [1 ]
Hirohara, R. [1 ,3 ]
Tsunoda, T. [1 ,3 ]
Yoshida, M. [1 ,4 ]
机构
[1] Waseda Univ, Grad Sch, Dept Modern Mech Engn, Shinjyuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan
[2] IHI Corp, Koto Ku, 3-1-1 Toyosu, Tokyo 1358710, Japan
[3] Honda Motor Co Ltd, Minato Ku, 2-1-1 Minami Aoyama, Tokyo 1078556, Japan
[4] Waseda Univ, Kagami Mem Res Inst Mat Sci & Technol, Shinjyuku Ku, 2-8-26 Nishi Waseda, Tokyo 1690051, Japan
关键词
Hot tearing; Grain refinement; Al-Mg alloy; Thermal stress analysis; The strain rate sensitivity; MUSHY ZONE; ALUMINUM-ALLOYS; SEMISOLID STATE; THERMAL STRAIN; SOLIDIFICATION; MICROSTRUCTURE; DEFORMATION; BEHAVIOR;
D O I
10.1007/s00170-018-2791-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Results of finite element method (FEM) thermal stress analyses during solidification of an Al-Mg alloy with different grain sizes revealed the contribution of the macroscopic strain to the reduction of hot tearing susceptibility by the grain refinement. This study used an elasto-creep model to describe the mechanical behavior of the alloy in the semi-solid state. The grain size-dependence was described using the experimentally determined two parameters of n (=dlog epsilon c/dlog sigma) and A in the power-law creep model in earlier work. Results showed that grain refinement makes the creep strain distribution more uniform and suppresses the maximum strain value during solidification, which in turn should contribute to reducing the hot tearing susceptibility. This result demonstrates that the grain size-dependence of the two creep parameters during the solidification is a key factor for the quantitative prediction of hot tearing tendency with the consideration of grain size.
引用
收藏
页码:1867 / 1880
页数:14
相关论文
共 41 条
[1]   Constitutive behavior of as-cast aluminum alloys AA3104, AA5182 and AA6111 at below solidus temperatures [J].
Alankar, Alankar ;
Wells, Mary A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (29-30) :7812-7820
[2]  
[Anonymous], 1929, CREEP STEEL HIGH TEM
[3]   Predicting flow localization in semi-solid deformation [J].
Ansari, M. H. Sheikh ;
Aghaie-Khafri, M. .
INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2018, 11 (02) :165-173
[4]  
Bailey RW., 1935, P I MECH ENG, V131, P131, DOI [DOI 10.1243/PIME_PROC_1935_131_012_02, 10.1243/PIMEPROC193513101202, DOI 10.1243/PIMEPROC193513101202]
[5]  
Bishop H.F., 1957, AFS Transactions, V65, P247
[6]  
Campbell J, 1992, CASTINGS, P242
[7]   Interplay among solidification, microstructure, residual strain and hot tearing in B206 aluminum alloy [J].
D'Elia, F. ;
Ravindran, C. ;
Sediako, D. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 624 :169-180
[8]   Development of strength in solidifying aluminium alloys [J].
Dahle, AK ;
Arnberg, L .
ACTA MATERIALIA, 1997, 45 (02) :547-559
[9]   HIGH APPARENT CREEP ACTIVATION-ENERGIES IN MUSHY ZONE MICROSTRUCTURES [J].
DREZET, JM ;
EGGELER, G .
SCRIPTA METALLURGICA ET MATERIALIA, 1994, 31 (06) :757-762
[10]   Contraction of aluminum alloys during and after solidification [J].
Eskin, DG ;
Suyitno ;
Mooney, JF ;
Katgerman, L .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2004, 35A (04) :1325-1335