Wavenumber selection based on Singular Value Decomposition for sample classification

被引:6
作者
Brito, Joao B. G. [1 ]
Bucco, Guilherme B. [2 ]
John, Danielle K. [3 ]
Ferrao, Marco F. [4 ]
Ortiz, Rafael S. [5 ,6 ]
Mariotti, Kristiane C. [6 ,7 ]
Anzanello, Michel J. [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Dept Ind Engn, Ave Osvaldo Aranha,99 5 Andar, Porto Alegre, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Sch Adm, Washington Luiz 855, Porto Alegre, RS, Brazil
[3] Univ Fed Rio Grande do Sul, Dept Inorgan Chem, Chem Inst, Ave Bento Goncalves 9500, Porto Alegre, RS, Brazil
[4] Inst Nacl Ciencia & Tecnol Bioanalitca INCT Bioan, Campinas, SP, Brazil
[5] Brazilian Fed Police, Tech & Sci Div, Ave Ipiranga 1365, Porto Alegre, RS, Brazil
[6] Inst Nacl Ciencia & Tecnol Forense INCT Forense, Porto Alegre, RS, Brazil
[7] Univ Fed Rio Grande do Sul, Dept Pharm, Ave Ipiranga 2752, Porto Alegre, RS, Brazil
关键词
Wavenumber selection; Falsified medicines; SVD; KNN; ATR-FTIR; COUNTERFEIT MEDICINES; FTIR SPECTROSCOPY; TABLETS; IDENTIFICATION; VIAGRA(R);
D O I
10.1016/j.forsciint.2020.110191
中图分类号
DF [法律]; D9 [法律]; R [医药、卫生];
学科分类号
0301 ; 10 ;
摘要
The dissemination of falsified medicines is a public health risk. Techniques such as attenuated total reflectance Fourier transform infrared (ATR -FTIR) spectroscopy are commonly adopted for fraudulent drug detection. However, the spectrum generated by the ATR-FTIR typically results in hundreds of wavenumbers, reducing the performance of classification methods aimed at discriminating between authentic and falsified medicines. This article proposes a novel method for selecting a reduced size subset of wavenumbers that improves the classifier performance. The singular value decomposition SVD is used to generate a wavenumber importance index. An iterative process creates k -nearest neighbor (KNN) models by adding the wavenumbers in a decreasing order according to the importance index. Wavenumbers that increase classification accuracy are selected. When applied to Cialis (R) ATR-FTIR data, the proposed approach retained average 0.51% of the original wavenumbers with 100% accurate classifications; as for the Viagra (R) data set, the method yielded perfect classifications retaining average 0.17% of the original wavenumbers. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 28 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]  
[Anonymous], 1965, Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis, DOI [10.1137/0702016, DOI 10.1137/0702016]
[3]   PLS-DA wavenumber selection for the categorization of medicine samples based on multiple criteria [J].
Anzanello, Michel J. ;
Ortiz, Rafael S. ;
Limberger, Renata ;
Mariotti, Kristiane .
FORENSIC SCIENCE INTERNATIONAL, 2014, 242 :111-116
[4]   A multivariate-based wavenumber selection method for classifying medicines into authentic or counterfeit classes [J].
Anzanello, Michel J. ;
Ortiz, Rafael S. ;
Limbergerb, Renata P. ;
Mayorga, Paulo .
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2013, 83 :209-214
[5]   Selecting the best variables for classifying production batches into two quality levels [J].
Anzanello, Michel J. ;
Albin, Susan L. ;
Chaovalitwongse, Wanpracha A. .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2009, 97 (02) :111-117
[6]   APPLICATION OF LINEAR PREDICTION AND SINGULAR VALUE DECOMPOSITION (LPSVD) TO DETERMINE NMR FREQUENCIES AND INTENSITIES FROM THE FID [J].
BARKHUIJSEN, H ;
DEBEER, R ;
BOVEE, WMMJ ;
CREYGHTON, JHN ;
VANORMONDT, D .
MAGNETIC RESONANCE IN MEDICINE, 1985, 2 (01) :86-89
[7]   Profiling of counterfeit medicines by vibrational spectroscopy [J].
Been, Frederic ;
Roggo, Yves ;
Degardin, Klara ;
Esseiva, Pierre ;
Margot, Pierre .
FORENSIC SCIENCE INTERNATIONAL, 2011, 211 (1-3) :83-100
[8]  
Colthup N.B., 1990, INTRO INFRARED RAMAN, DOI [10.1016/B978-0-08-091740-5.50002-8., DOI 10.1016/B978-0-08-091740-5.50002-8]
[9]  
Elliott MA, 1999, MAGN RESON MED, V41, P450, DOI 10.1002/(SICI)1522-2594(199903)41:3<450::AID-MRM4>3.0.CO
[10]  
2-9