Static, oscillating modulus, and moving pulses in the one-dimensional quintic complex Ginzburg-Landau equation: An analytical approach

被引:16
作者
Descalzi, O [1 ]
机构
[1] Univ Los Andes, Fac Ingn, Santiago, Chile
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 04期
关键词
D O I
10.1103/PhysRevE.72.046210
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
By means of a matching approach we study analytically the appearance of static and oscillating-modulus pulses in the one-dimensional quintic complex Ginzburg-Landau equation without nonlinear gradient terms. When considering nonlinear gradient terms the method enables us to calculate the velocities of the stable and unstable moving pulses. We focus on this equation since it represents a prototype envelope equation associated with the onset of an oscillatory instability near a weakly inverted bifurcation. The results obtained using the analytic approximation scheme are in good agreement with direct numerical simulations. The method is also useful in studying other localized structures like holes.
引用
收藏
页数:10
相关论文
共 40 条
[1]   Three forms of localized solutions of the quintic complex Ginzburg-Landau equation [J].
Afanasjev, VV ;
Akhmediev, N ;
SotoCrespo, JM .
PHYSICAL REVIEW E, 1996, 53 (02) :1931-1939
[2]   NOVEL ARBITRARY-AMPLITUDE SOLITON-SOLUTIONS OF THE CUBIC-QUINTIC COMPLEX GINZBURG-LANDAU EQUATION [J].
AKHMEDIEV, N ;
AFANASJEV, VV .
PHYSICAL REVIEW LETTERS, 1995, 75 (12) :2320-2323
[3]   Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach [J].
Akhmediev, N ;
Soto-Crespo, JM ;
Town, G .
PHYSICAL REVIEW E, 2001, 63 (05) :566021-566021
[4]   Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation [J].
Akhmediev, NN ;
Afanasjev, VV ;
SotoCrespo, JM .
PHYSICAL REVIEW E, 1996, 53 (01) :1190-1201
[5]   The world of the complex Ginzburg-Landau equation [J].
Aranson, IS ;
Kramer, L .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :99-143
[6]   Formation of clusters of localized states in a gas discharge system via a self-completion scenario [J].
Astrov, YA ;
Logvin, YA .
PHYSICAL REVIEW LETTERS, 1997, 79 (16) :2983-2986
[7]   Stable static localized structures in one dimension [J].
Coullet, P ;
Riera, C ;
Tresser, C .
PHYSICAL REVIEW LETTERS, 2000, 84 (14) :3069-3072
[8]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[9]   Effect of nonlinear gradient terms on breathing localized solutions in the quintic complex Ginzburg-Landau equation [J].
Deissler, RJ ;
Brand, HR .
PHYSICAL REVIEW LETTERS, 1998, 81 (18) :3856-3859
[10]   PERIODIC, QUASI-PERIODIC, AND CHAOTIC LOCALIZED SOLUTIONS OF THE QUINTIC COMPLEX GINZBURG-LANDAU EQUATION [J].
DEISSLER, RJ ;
BRAND, HR .
PHYSICAL REVIEW LETTERS, 1994, 72 (04) :478-481