Robust model-based analysis of single-particle tracking experiments with Spot-On

被引:0
|
作者
Hansen, Anders S. [1 ,2 ]
Woringer, Maxime [1 ,3 ,4 ]
Grimm, Jonathan B. [5 ]
Lavis, Luke D. [5 ]
Tjian, Robert [1 ,2 ]
Darzacq, Xavier [1 ]
机构
[1] Univ Calif Berkeley, CIRM Ctr Excellence, Li Ka Shing Ctr Biomed & Hlth Sci, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[2] Howard Hughes Med Inst, Berkeley, CA 94720 USA
[3] Inst Pasteur, Unite Imagerie & Modelisat, Paris, France
[4] UPMC Univ Paris 06, Sorbonne Univ, Paris, France
[5] Howard Hughes Med Inst, Janelia Res Campus, Ashburn, VI USA
来源
ELIFE | 2018年 / 7卷
基金
美国国家卫生研究院;
关键词
LIVE-CELL; LOCALIZATION MICROSCOPY; MOLECULE TRACKING; FACTOR DYNAMICS; FLUOROPHORES; DIFFUSION; KINETICS; REVEALS; NUCLEUS; BINDING;
D O I
10.7554/eLife.33125.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce 'Spot-On', an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Single-particle tracking: Applications to membrane dynamics
    Saxton, MJ
    Jacobson, K
    ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1997, 26 : 373 - 399
  • [32] SINGLE-PARTICLE TRACKING - MODELS OF DIRECTED TRANSPORT
    SAXTON, MJ
    BIOPHYSICAL JOURNAL, 1994, 67 (05) : 2110 - 2119
  • [33] Single-particle tracking: The distribution of diffusion coefficients
    Saxton, MJ
    BIOPHYSICAL JOURNAL, 1997, 72 (04) : 1744 - 1753
  • [34] Mean single-particle potentials and single-particle energies in a microscopic model of the nucleus
    A. I. Steshenko
    Physics of Atomic Nuclei, 2002, 65 : 413 - 425
  • [35] Mean single-particle potentials and single-particle energies in a microscopic model of the nucleus
    Steshenko, AI
    PHYSICS OF ATOMIC NUCLEI, 2002, 65 (03) : 413 - 425
  • [36] Particle-based simulation approach for single-particle interference experiments: Application to double-slit experiments
    Jin, F.
    De Raedt, H.
    Michielsen, K.
    QUANTUM THEORY: RECONSIDERATION OF FOUNDATIONS - 5, 2010, 1232 : 93 - +
  • [37] TRamWAy: mapping physical properties of moving biomolecules in large scale single-particle tracking experiments
    Laurent, Francois
    Verdier, Hippolyte
    Duval, Maxime
    Serov, Alexander S.
    Vestergaard, Christian L.
    Masson, Jean-Baptiste
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 276A - 276A
  • [38] Simulation of PMMA powder flow electrification using a new charging model based on single-particle experiments
    Grosshans, Holger
    Xu, Wenchao
    Matsuyama, Tatsushi
    CHEMICAL ENGINEERING SCIENCE, 2022, 254
  • [39] Robust model-based design of experiments for guaranteed parameter estimation
    Mukkula, Anwesh Reddy Gottu
    Paulen, Radoslav
    27TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT B, 2017, 40B : 1639 - 1644
  • [40] Robust probabilistic estimation of uncertain appearance for model-based tracking
    Krahnstoever, N
    Sharma, R
    IEEE WORKSHOP ON MOTION AND VIDEO COMPUTING (MOTION 2002), PROCEEDINGS, 2002, : 28 - 33