Robust model-based analysis of single-particle tracking experiments with Spot-On

被引:0
作者
Hansen, Anders S. [1 ,2 ]
Woringer, Maxime [1 ,3 ,4 ]
Grimm, Jonathan B. [5 ]
Lavis, Luke D. [5 ]
Tjian, Robert [1 ,2 ]
Darzacq, Xavier [1 ]
机构
[1] Univ Calif Berkeley, CIRM Ctr Excellence, Li Ka Shing Ctr Biomed & Hlth Sci, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[2] Howard Hughes Med Inst, Berkeley, CA 94720 USA
[3] Inst Pasteur, Unite Imagerie & Modelisat, Paris, France
[4] UPMC Univ Paris 06, Sorbonne Univ, Paris, France
[5] Howard Hughes Med Inst, Janelia Res Campus, Ashburn, VI USA
基金
美国国家卫生研究院;
关键词
LIVE-CELL; LOCALIZATION MICROSCOPY; MOLECULE TRACKING; FACTOR DYNAMICS; FLUOROPHORES; DIFFUSION; KINETICS; REVEALS; NUCLEUS; BINDING;
D O I
10.7554/eLife.33125.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce 'Spot-On', an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants.
引用
收藏
页数:33
相关论文
共 45 条
[1]  
[Anonymous], 1986, CONDUCTION HEAT SOLI
[2]   Statistics of camera-based single-particle tracking [J].
Berglund, Andrew J. .
PHYSICAL REVIEW E, 2010, 82 (01)
[3]   Objective comparison of particle tracking methods [J].
Chenouard, Nicolas ;
Smal, Ihor ;
de Chaumont, Fabrice ;
Maska, Martin ;
Sbalzarini, Ivo F. ;
Gong, Yuanhao ;
Cardinale, Janick ;
Carthel, Craig ;
Coraluppi, Stefano ;
Winter, Mark ;
Cohen, Andrew R. ;
Godinez, William J. ;
Rohr, Karl ;
Kalaidzidis, Yannis ;
Liang, Liang ;
Duncan, James ;
Shen, Hongying ;
Xu, Yingke ;
Magnusson, Klas E. G. ;
Jalden, Joakim ;
Blau, Helen M. ;
Paul-Gilloteaux, Perrine ;
Roudot, Philippe ;
Kervrann, Charles ;
Waharte, Francois ;
Tinevez, Jean-Yves ;
Shorte, Spencer L. ;
Willemse, Joost ;
Celler, Katherine ;
van Wezel, Gilles P. ;
Dan, Han-Wei ;
Tsai, Yuh-Show ;
Ortiz de Solorzano, Carlos ;
Olivo-Marin, Jean-Christophe ;
Meijering, Erik .
NATURE METHODS, 2014, 11 (03) :281-U247
[4]   The influence of movement on the localization precision of sub-resolution particles in fluorescence microscopy [J].
Deschout, Hendrik ;
Neyts, Kristiaan ;
Braeckmans, Kevin .
JOURNAL OF BIOPHOTONICS, 2012, 5 (01) :97-109
[5]   Probing transcription factor dynamics at the single-molecule level in a living cell [J].
Elf, Johan ;
Li, Gene-Wei ;
Xie, X. Sunney .
SCIENCE, 2007, 316 (5828) :1191-1194
[6]   Optimization of Cell Morphology Measurement via Single-Molecule Tracking PALM [J].
Frost, Nicholas A. ;
Lu, Hsiangmin E. ;
Blanpied, Thomas A. .
PLOS ONE, 2012, 7 (05)
[7]   Tracking single proteins within cells [J].
Goulian, M ;
Simon, SM .
BIOPHYSICAL JOURNAL, 2000, 79 (04) :2188-2198
[8]  
Grimm JB, 2016, NAT METHODS, V13, P985, DOI [10.1038/NMETH.4034, 10.1038/nmeth.4034]
[9]   Synthesis of a Far-Red Photoactivatable Silicon-Containing Rhodamine for Super-Resolution Microscopy [J].
Grimm, Jonathan B. ;
Klein, Teresa ;
Kopek, Benjamin G. ;
Shtengel, Gleb ;
Hess, Harald F. ;
Sauer, Markus ;
Lavis, Luke D. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (05) :1723-1727
[10]  
Grimm JB, 2015, NAT METHODS, V12, P244, DOI [10.1038/NMETH.3256, 10.1038/nmeth.3256]