Robust model-based analysis of single-particle tracking experiments with Spot-On

被引:0
|
作者
Hansen, Anders S. [1 ,2 ]
Woringer, Maxime [1 ,3 ,4 ]
Grimm, Jonathan B. [5 ]
Lavis, Luke D. [5 ]
Tjian, Robert [1 ,2 ]
Darzacq, Xavier [1 ]
机构
[1] Univ Calif Berkeley, CIRM Ctr Excellence, Li Ka Shing Ctr Biomed & Hlth Sci, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[2] Howard Hughes Med Inst, Berkeley, CA 94720 USA
[3] Inst Pasteur, Unite Imagerie & Modelisat, Paris, France
[4] UPMC Univ Paris 06, Sorbonne Univ, Paris, France
[5] Howard Hughes Med Inst, Janelia Res Campus, Ashburn, VI USA
来源
ELIFE | 2018年 / 7卷
基金
美国国家卫生研究院;
关键词
LIVE-CELL; LOCALIZATION MICROSCOPY; MOLECULE TRACKING; FACTOR DYNAMICS; FLUOROPHORES; DIFFUSION; KINETICS; REVEALS; NUCLEUS; BINDING;
D O I
10.7554/eLife.33125.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce 'Spot-On', an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Analysis and refinement of 2D single-particle tracking experiments
    Kerkhoff, Yannic
    Block, Stephan
    BIOINTERPHASES, 2020, 15 (02)
  • [2] SINGLE-PARTICLE TRACKING IN AN ARCHIPELAGO
    SAXTON, MJ
    BIOPHYSICAL JOURNAL, 1994, 66 (02) : A18 - A18
  • [3] A guide to single-particle tracking
    Simon, Francois
    Weiss, Lucien E.
    van Teeffelen, Sven
    NATURE REVIEWS METHODS PRIMERS, 2024, 4 (01):
  • [4] Improved estimation of anomalous diffusion exponents in single-particle tracking experiments
    Kepten, Eldad
    Bronshtein, Irena
    Garini, Yuval
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [5] Robust real-time 3D single-particle tracking using a dynamically moving laser spot
    Hou, Shangguo
    Lang, Xiaoqi
    Welsher, Kevin
    OPTICS LETTERS, 2017, 42 (12) : 2390 - 2393
  • [6] Obstructed diffusion propagator analysis for single-particle tracking
    Weigel, Aubrey V.
    Ragi, Shankarachary
    Reid, Michael L.
    Chong, Edwin K. P.
    Tamkun, Michael M.
    Krapf, Diego
    PHYSICAL REVIEW E, 2012, 85 (04):
  • [7] Single-particle tracking: New methods of data analysis
    Saxton, MJ
    BIOPHYSICAL JOURNAL, 1996, 70 (02) : TU415 - TU415
  • [8] Statistics of camera-based single-particle tracking
    Berglund, Andrew J.
    PHYSICAL REVIEW E, 2010, 82 (01):
  • [9] Maximum likelihood estimates of diffusion coefficients from single-particle tracking experiments
    Bullerjahn, Jakob Tomas
    Hummer, Gerhard
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (23):
  • [10] Single-particle tracking: connecting the dots
    Saxton, Michael J.
    NATURE METHODS, 2008, 5 (08) : 671 - 672