Error estimates for multinomial approximations of American options in a class of jump diffusion models

被引:1
|
作者
Dolinsky, Yan [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
关键词
optimal stopping; American options; jump diffusion model; strong approximation theorems; CONVERGENCE;
D O I
10.1080/17442508.2010.515309
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive error estimates for multinomial approximations of American options in a class of multidimensional jump diffusion models. We assume that the pay-offs are Markovian and satisfy Lipschitz-type conditions. Error estimates for such type of approximations were not obtained before. Our main tool is the strong approximation theorems for i.i.d. random vectors which were obtained in Sakhanenko (A new way to obtain estimates in the invariance principle, High Dimen. Probab. II (2000), pp. 221-243). For the multidimensional Black-Scholes model, our results can also be extended to a general path-dependent pay-offs which satisfy Lipschitz-type conditions. For the case of multinomial approximations of American options for the Black-Scholes model, our estimates are a significant improvement of those which were obtained in Kifer (Optimal stopping and strong approximation theorems, Stochastics 79 (2007), pp. 253-273; for game options in a more general set-up).
引用
收藏
页码:415 / 429
页数:15
相关论文
共 50 条
  • [1] AMERICAN OPTIONS AND JUMP-DIFFUSION MODELS
    ZHANG, XL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (09): : 857 - 862
  • [2] Howard's algorithm for high-order approximations of American options under jump-diffusion models
    Thakoor, Nawdha
    Behera, Dhiren Kumar
    Tangman, Desire Yannick
    Bhuruth, Muddun
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2020, 10 (02) : 193 - 203
  • [3] Howard’s algorithm for high-order approximations of American options under jump-diffusion models
    Nawdha Thakoor
    Dhiren Kumar Behera
    Désiré Yannick Tangman
    Muddun Bhuruth
    International Journal of Data Science and Analytics, 2020, 10 : 193 - 203
  • [4] Error estimates for binomial approximations of game options
    Kifer, Yuri
    ANNALS OF APPLIED PROBABILITY, 2006, 16 (02): : 984 - 1033
  • [5] AVERAGE OPTIONS FOR JUMP DIFFUSION MODELS
    Kunita, Hiroshi
    Yamada, Takuya
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2010, 27 (02) : 143 - 166
  • [6] An iterative method for pricing American options under jump-diffusion models
    Salmi, Santtu
    Toivanen, Jari
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (07) : 821 - 831
  • [7] American-style options in jump-diffusion models: estimation and evaluation
    Ben-Ameur, Hatem
    Cherif, Rim
    Remillard, Bruno
    QUANTITATIVE FINANCE, 2016, 16 (08) : 1313 - 1324
  • [8] Saddlepoint approximations for affine jump-diffusion models
    Glasserman, Paul
    Kim, Kyoung-Kuk
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2009, 33 (01): : 15 - 36
  • [9] Error estimates for approximations of american put option price
    Šiška, D. (dsiska@math.uni-bielefeld.de), 1600, National Academy of Sciences of Belarus (12):
  • [10] Reduced Order Models for Pricing American Options under Stochastic Volatility and Jump-Diffusion Models
    Balajewicz, Maciej
    Toivanen, Jari
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 734 - 743