Numerical approximation of a 3D mechanochemical interface model for skin patterning

被引:7
|
作者
Vilaca, Luis Miguel De Oliveira [1 ,2 ]
Milinkovitch, Michel C. [1 ,2 ]
Ruiz-Baier, Ricardo [3 ,4 ]
机构
[1] Univ Geneva, Dept Genet & Evolut, LANE, 4 Blvd Yvoy, CH-1205 Geneva, Switzerland
[2] SIB Swiss Inst Bioinformat, Geneva, Switzerland
[3] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[4] Sechenov Univ, Inst Personalised Med, Lab Math Modelling, Moscow, Russia
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Elasticity-diffusion problem; Interface coupling; Pattern formation; Skin appendage modelling; Finite element methods; Adaptive time stepping; OPTIMIZED SCHWARZ METHODS; FINITE-ELEMENT-METHOD; DIFFUSION; MULTISCALE; ANGIOGENESIS; ELASTICITY; SIMULATION; MECHANICS; SYSTEMS;
D O I
10.1016/j.jcp.2019.01.023
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce a model for the mass transfer of molecular activators and inhibitors in two media separated by an interface, and study its interaction with the deformations exhibited by the two-layer skin tissue where they occur. The mathematical model results in a system of nonlinear advection-diffusion-reaction equations including cross-diffusion, and coupled with an interface elasticity problem. We propose a Galerkin method for the discretisation of the set of governing equations, involving also a suitable Newton linearisation, partitioned techniques, non-overlapping Schwarz alternating schemes, and high-order adaptive time stepping algorithms. The experimental accuracy and robustness of the proposed partitioned numerical methods is assessed, and some illustrating tests in 2D and 3D are provided to exemplify the coupling effects between the mechanical properties and the advectiondiffusion-reaction interactions involving the two separate layers. (C) 2019 The Authors. Published by Elsevier Inc.
引用
收藏
页码:383 / 404
页数:22
相关论文
共 50 条
  • [31] Numerical model to discretize source fields in the 3D finite element method
    Le Menach, Y
    Clénet, S
    Piriou, F
    IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (04) : 676 - 679
  • [32] A 3D mesoscopic frictional cohesive zone model for the steel-concrete interface
    Abbas, Mohammad
    Bary, Benoit
    Jason, Ludovic
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 237
  • [33] Numerical modeling of fracture process using a new fracture constitutive model with applications to 2D and 3D engineering cases
    Chen, Junchao
    Zhou, Lei
    Chemenda, Alexandre I.
    Xia, Binwei
    Su, Xiaopeng
    Shen, Zhonghui
    ENERGY SCIENCE & ENGINEERING, 2020, 8 (07) : 2628 - 2647
  • [34] Experimental and Numerical Investigation of the Die Swell in 3D Printing Processes
    De Rosa, Stefano
    Tammaro, Daniele
    D'Avino, Gaetano
    MICROMACHINES, 2023, 14 (02)
  • [35] Effects of Surface, Interface, and Defect on Zeolite Catalysis Probed by a 3D Anisotropic Model
    Ye, Guanghua
    Zhou, Lei
    Zhang, Qunfeng
    Meng, Jinlin
    Weng, Junqi
    Zhou, Xinggui
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (26) : 9983 - 9992
  • [36] 3D Numerical Modeling for Inductive Processes
    Gagnoud, A.
    Du Terrail-Couvat, Y.
    Budenkova, O.
    9TH INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC PROCESSING OF MATERIALS (EPM2018), 2018, 424
  • [37] 3D numerical modelling of turbidity currents
    Georgoulas, Anastasios N.
    Angelidis, Panagiotis B.
    Panagiotidis, Theologos G.
    Kotsovinos, Nikolaos E.
    ENVIRONMENTAL FLUID MECHANICS, 2010, 10 (06) : 603 - 635
  • [38] Numerical approximation of 3D particle beams by multi-scale paraxial Vlasov-Maxwell equations
    Assous, F.
    Furman, Y.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 488
  • [39] A full 3D numerical model of the industrial electrostatic coating process for moving targets
    Toljic, N.
    Adamiak, K.
    Castle, G. S. P.
    Kuo, Hong-Hsiang
    Fan, Hua-Tzu
    JOURNAL OF ELECTROSTATICS, 2013, 71 (03) : 299 - 304
  • [40] 3D numerical deformation model of the intrusive event forerunning the 2001 Etna eruption
    Currenti, Gilda
    Negro, Ciro Gel
    Ganci, Gaetana
    Scandura, Danila
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2008, 168 (1-2) : 88 - 96