Implementing molecular dynamics on hybrid high performance computers - Particle-particle particle-mesh

被引:382
|
作者
Brown, W. Michael [1 ]
Kohlmeyer, Axel [2 ]
Plimpton, Steven J. [3 ]
Tharrington, Arnold N. [1 ]
机构
[1] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA
[2] Temple Univ, Inst Computat Mol Sci, Philadelphia, PA 19122 USA
[3] Sandia Natl Labs, Albuquerque, NM USA
基金
美国国家科学基金会;
关键词
Molecular dynamics; Electrostatics; Particle mesh; GPU; Hybrid parallel computing; EWALD SUMS;
D O I
10.1016/j.cpc.2011.10.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The use of accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high-performance computers, machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. In this paper, we present a continuation of previous work implementing algorithms for using accelerators into the LAMMPS molecular dynamics software for distributed memory parallel hybrid machines. In our previous work, we focused on acceleration for short-range models with an approach intended to harness the processing power of both the accelerator and (multi-core) CPUs. To augment the existing implementations, we present an efficient implementation of long-range electrostatic force calculation for molecular dynamics. Specifically, we present an implementation of the particle-particle particle-mesh method based on the work by Harvey and De Fabritiis. We present benchmark results on the Keeneland InfiniBand GPU cluster. We provide a performance comparison of the same kernels compiled with both CUDA and OpenCL. We discuss limitations to parallel efficiency and future directions for improving performance on hybrid or heterogeneous computers. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:449 / 459
页数:11
相关论文
共 50 条
  • [1] Molecular dynamics simulation of highly charged proteins:: Comparison of the particle-particle particle-mesh and reaction field methods for the calculation of electrostatic interactions
    Gargallo, R
    Hünenberger, PH
    Avilés, FX
    Oliva, B
    PROTEIN SCIENCE, 2003, 12 (10) : 2161 - 2172
  • [2] Efficient Particle-Mesh Spreading on GPUs
    Guo, Xiangyu
    Liu, Xing
    Xu, Peng
    Du, Zhihui
    Chow, Edmond
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 120 - 129
  • [3] A numerical wave tank using a hybrid particle-mesh approach
    Maljaars, Jakob
    Labeur, Robert J.
    Moller, Matthias
    Uijttewaal, Wim
    PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON THE MATERIAL POINT METHOD (MPM 2017), 2017, 175 : 21 - 28
  • [4] The optimal particle-mesh interpolation basis
    Wang, Han
    Fang, Jun
    Gao, Xingyu
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (12)
  • [5] Implementing molecular dynamics on hybrid high performance computers - short range forces
    Brown, W. Michael
    Wang, Peng
    Plimpton, Steven J.
    Tharrington, Arnold N.
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (04) : 898 - 911
  • [6] Optimization of Parameters for Molecular Dynamics Simulation Using Smooth Particle-Mesh Ewald in GROMACS 4.5
    Abraham, Mark J.
    Gready, Jill E.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (09) : 2031 - 2040
  • [7] Development of a hybrid particle-mesh method for simulating free-surface flows
    Jakob Maljaars
    Robert Jan Labeur
    Matthias Möller
    Wim Uijttewaal
    Journal of Hydrodynamics, 2017, 29 : 413 - 422
  • [8] Development of a hybrid particle-mesh method for simulating free-surface flows
    Maljaars, Jakob
    Labeur, Robert Jan
    Moller, Matthias
    Uijttewaal, Wim
    JOURNAL OF HYDRODYNAMICS, 2017, 29 (03) : 413 - 422
  • [9] Development of a hybrid particle-mesh method for simulating free-surface flows
    Jakob Maljaars
    Robert Jan Labeur
    Matthias M?ller
    Wim Uijttewaal
    Journal of Hydrodynamics, 2017, 29 (03) : 413 - 422
  • [10] Kaiser-Bessel basis for particle-mesh interpolation
    Gao, Xingyu
    Fang, Jun
    Wang, Han
    PHYSICAL REVIEW E, 2017, 95 (06)