Feature Enhanced Faster R-CNN for Object Detection

被引:0
|
作者
Jiang, Jun [1 ,2 ,3 ]
Hu, Zhongbing [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Natl Key Lab Sci & Technol Multispectral Informat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Minist Educ, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan 430074, Peoples R China
来源
MIPPR 2019: AUTOMATIC TARGET RECOGNITION AND NAVIGATION | 2020年 / 11429卷
关键词
object detection; feature fusion;
D O I
10.1117/12.2539211
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In recent years, deep convolutional neural networks (CNNs) have achieved great successes in object detection, however, feature extraction is still sensitive to scale variation. FPN is one of the majority strategies to deal with this problem. It uses a top-down pathway and lateral connection to combine high-level features with low-level features, and then generates robust features. However, in FPN, high-level features are still unable to capture the detail information, and this results in the inconsistent representations for the same objects with different scales. To solve this problem, we proposed a Feature Enhanced Module to get more robust features, which can help the networks to produce object localization with higher quality, i.e., without bells and whistles. The performance of the proposed method is shown by the experiments in which it achieves a 1.1 point AP50 gain and 2.3 point AP75 gain on the Pascal VOC dataset, comparing to the Faster R-CNN with FPN.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Faster R-CNN with Attention Feature Map for Robust Object Detection
    Lee, Youl-Kyeong
    Jo, Kang-Hyun
    FRONTIERS OF COMPUTER VISION, 2020, 1212 : 180 - 191
  • [2] Street Object Detection Based on Faster R-CNN
    Cai, Wendi
    Li, Jiadie
    Xie, Zhongzhao
    Zhao, Tao
    Lu, Kang
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 9500 - 9503
  • [3] Comparison of faster R-CNN models for object detection
    Lee, Chungkeun
    Kim, H. Jin
    Oh, Kyeong Won
    2016 16TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2016, : 107 - 110
  • [4] BFF R-CNN: Balanced Feature Fusion for Object Detection
    Liu, Hongzhe
    Wang, Ningwei
    Li, Xuewei
    Xu, Cheng
    Li, Yaze
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (08) : 1472 - 1480
  • [5] Object Detection Algorithm Based on Improved Faster R-CNN
    Zhou Bing
    Li Runxin
    Shang Zhenhong
    Li Xiaowu
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (10)
  • [6] Atrous Faster R-CNN for Small Scale Object Detection
    Guan, Tongfan
    Zhu, Hao
    2017 2ND INTERNATIONAL CONFERENCE ON MULTIMEDIA AND IMAGE PROCESSING (ICMIP), 2017, : 16 - 21
  • [7] Improvement of Object Detection Based on Faster R-CNN and YOLO
    Fan, Jiayi
    Lee, JangHyeon
    Jung, InSu
    Lee, YongKeun
    2021 36TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC), 2021,
  • [8] Ganster R-CNN: Occluded Object Detection Network Based on Generative Adversarial Nets and Faster R-CNN
    Sun, Kelei
    Wen, Qiufen
    Zhou, Huaping
    IEEE ACCESS, 2022, 10 : 105022 - 105030
  • [9] Improved Faster R-CNN for Multi-Scale Object Detection
    Li X.
    Fu C.
    Li X.
    Wang Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (07): : 1095 - 1101
  • [10] Foreign Object Detection of Transmission Lines Based on Faster R-CNN
    Guo, Shuqiang
    Bai, Qianlong
    Zhou, Xinxin
    INFORMATION SCIENCE AND APPLICATIONS, 2020, 621 : 269 - 275