Multi-scale seismic full waveform inversion in the frequency-domain with a multi-grid method

被引:5
作者
Song Jian-Yong [1 ]
Zheng Xiao-Dong [1 ]
Qin Zhen [1 ]
Su Ben-Yu [2 ]
机构
[1] Geophys Dept CNPC RIPED, Beijing 10083, Peoples R China
[2] Kyushu Univ, Grad Sch Engn, Dept Earth Resources Engn, Fukuoka 8190395, Japan
关键词
Full waveform inversion; frequency domain wave equation; multi-grid iterative method; bi-conjugated gradient stable algorithm; CROSS-HOLE TOMOGRAPHY; ELASTIC INVERSION; STRATEGY;
D O I
10.1007/s11770-011-0304-2
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based on the optimal steep descent methods, we present an algorithm which combines the preconditioned bi-conjugated gradient stable method and the multi-grid method to compute the wave propagation and the gradient space. The multiple scale prosperity of the waveform inversion and the multi-grid method can overcome the inverse problems local minima defect and accelerate convergence. The local inhomogeneous three-hole model simulated results and the Marmousi model certify the algorithm effectiveness.
引用
收藏
页码:303 / 310
页数:8
相关论文
共 24 条
  • [1] Structure of the California Coast Ranges and San Andreas Fault at SAFOD from seismic waveform inversion and reflection imaging
    Bleibinhaus, Florian
    Hole, John A.
    Ryberg, Trond
    Fuis, Gary S.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2007, 112 (B6)
  • [2] An efficient multiscale method for time-domain waveform tomography
    Boonyasiriwat, Chaiwoot
    Valasek, Paul
    Routh, Partha
    Cao, Weiping
    Schuster, Gerard T.
    Macy, Brian
    [J]. GEOPHYSICS, 2009, 74 (06) : WCC59 - WCC68
  • [3] Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model
    Brenders, A. J.
    Pratt, R. G.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2007, 168 (01) : 133 - 151
  • [4] MULTISCALE SEISMIC WAVE-FORM INVERSION
    BUNKS, C
    SALECK, FM
    ZALESKI, S
    CHAVENT, G
    [J]. GEOPHYSICS, 1995, 60 (05) : 1457 - 1473
  • [5] ERLANGGA Y, 2008, SEG TECH PROG, V27, P1956
  • [6] On a class of preconditioners for solving the Helmholtz equation
    Erlangga, YA
    Vuik, C
    Oosterlee, CW
    [J]. APPLIED NUMERICAL MATHEMATICS, 2004, 50 (3-4) : 409 - 425
  • [7] Advances in iterative methods and preconditioners for the Helmholtz equation
    Erlangga, Yogi A.
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2008, 15 (01) : 37 - 66
  • [8] TWO-DIMENSIONAL NONLINEAR INVERSION OF SEISMIC WAVE-FORMS - NUMERICAL RESULTS
    GAUTHIER, O
    VIRIEUX, J
    TARANTOLA, A
    [J]. GEOPHYSICS, 1986, 51 (07) : 1387 - 1403
  • [9] 2 EFFICIENT ALGORITHMS FOR ITERATIVE LINEARIZED INVERSION OF SEISMIC WAVE-FORM DATA
    GELLER, RJ
    HARA, T
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 1993, 115 (03) : 699 - 710
  • [10] [马召贵 Ma Zhaogui], 2010, [石油地球物理勘探, Oil Geophysical Prospecting], V45, P1