Hybrid Background Error Covariances for a Limited-Area Deterministic Weather Prediction System

被引:4
作者
Bedard, Joel [1 ]
Caron, Jean-Francois [1 ]
Buehner, Mark [1 ]
Baek, Seung-Jong [1 ]
Fillion, Luc [1 ]
机构
[1] Environm & Climate Change Canada, Data Assimilat & Satellite Meteorol Sect, Meteorol Res Div, Dorval, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Data assimilation; Numerical weather prediction; forecasting; Regional models; VARIATIONAL DATA ASSIMILATION; ENSEMBLE KALMAN FILTER; PART II; IMPLEMENTATION; LOCALIZATION; RESOLUTION;
D O I
10.1175/WAF-D-19-0069.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study introduces an experimental regional assimilation configuration for a 4D ensemble-variational (4D-EnVar) deterministic weather prediction system. A total of 16 assimilation experiments covering July 2014 are presented to assess both experimental regional climatological background error covariances and updates in the treatment of flow-dependent error covariances. The regional climatological background error covariances are estimated using statistical correlations between variables instead of using balance operators. These error covariance estimates allow the analyses to fit more closely with the assimilated observations than when using the lower-resolution global background error covariances (due to shorter correlation scales), and the ensuing forecasts are significantly improved. The use of ensemble-based background error covariances is also improved by reducing vertical and horizontal localization length scales for the flow-dependent background error covariance component. Also, reducing the number of ensemble members employed in the deterministic analysis (from 256 to 128) reduced computational costs by half without degrading the accuracy of analyses and forecasts. The impact of the relative contributions of the climatological and flow-dependent background error covariance components is also examined. Results show that the experimental regional system benefits from giving a lower (higher) weight to climatological (flow-dependent) error covariances. When compared with the operational assimilation configuration of the continental prediction system, the proposed modifications to the background error covariances improve both surface and upper-air RMSE scores by nearly 1%. Still, the use of a higher-resolution ensemble to estimate flow-dependent background error covariances does not yet provide added value, although it is expected to allow for a better use of dense observations in the future.
引用
收藏
页码:1051 / 1066
页数:16
相关论文
共 44 条
[1]   A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics [J].
Bannister, R. N. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2008, 134 (637) :1971-1996
[2]   Practical Ensemble-Based Approaches to Estimate Atmospheric Background Error Covariances for Limited-Area Deterministic Data Assimilation [J].
Bedard, Joel ;
Buehner, Mark ;
Caron, Jean-Francois ;
Baek, Seung-Jong ;
Fillion, Luc .
MONTHLY WEATHER REVIEW, 2018, 146 (11) :3717-3733
[3]   Near-Surface Wind Observation Impact on Forecasts: Temporal Propagation of the Analysis Increment [J].
Bedard, Joel ;
Laroche, Stephane ;
Gauthier, Pierre .
MONTHLY WEATHER REVIEW, 2017, 145 (04) :1549-1564
[4]   A geo-statistical observation operator for the assimilation of near-surface wind data [J].
Bedard, Joel ;
Laroche, Stephane ;
Gauthier, Pierre .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2015, 141 (692) :2857-2868
[5]   A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh [J].
Benjamin, Stanley G. ;
Weygandt, Stephen S. ;
Brown, John M. ;
Hu, Ming ;
Alexander, Curtis R. ;
Smirnova, Tatiana G. ;
Olson, Joseph B. ;
James, Eric P. ;
Dowell, David C. ;
Grell, Georg A. ;
Lin, Haidao ;
Peckham, Steven E. ;
Smith, Tracy Lorraine ;
Moninger, William R. ;
Kenyon, Jaymes S. ;
Manikin, Geoffrey S. .
MONTHLY WEATHER REVIEW, 2016, 144 (04) :1669-1694
[6]  
Berre L, 2000, MON WEATHER REV, V128, P644, DOI 10.1175/1520-0493(2000)128<0644:EOSAMF>2.0.CO
[7]  
2
[8]  
Bloom SC, 1996, MON WEATHER REV, V124, P1256, DOI 10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO
[9]  
2
[10]   Background-error covariances for a convective-scale data-assimilation system: AROME-France 3D-Var [J].
Brousseau, Pierre ;
Berre, Loik ;
Bouttier, Francois ;
Desroziers, Gerald .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (655) :409-422