Applications of artificial intelligence in radiophysics

被引:5
作者
Li, Cuihua [1 ]
Liu, Hongyan [2 ]
Li, Peilin [3 ]
He, Jia [3 ]
Tian, Xiufang [4 ,6 ]
Gao, Wei [5 ]
机构
[1] Shandong Univ, Shandong Qianfoshan Hosp, Cheeloo Coll Med, Jinan, Peoples R China
[2] Shandong First Med Univ & Shandong Prov Qianfoshan, Affiliated Hosp 1, Dept Gastroenterol, Jinan, Peoples R China
[3] Shandong First Med Univ & Shandong Prov Qianfoshan, Shandong Coll Elect Technol, Jinan, Peoples R China
[4] Shandong First Med Univ & Shandong Prov Qianfoshan, Affiliated Hosp 1, Shandong Lung Canc Inst, Dept Oncol, Jinan, Peoples R China
[5] Hosp Shandong First Med Univ & Shandong Prov Qianf, Dept Dermatol, Affiliated 1, Jinan, Peoples R China
[6] Shandong Prov Qianfoshan Hosp, Jingshi Rd, Jinan 16766, Shandong, Peoples R China
关键词
Artificial intelligence; radiation therapy planning; radiophysics; radiotherapy; NEURAL-NETWORK; MACHINE; RADIOTHERAPY; SEGMENTATION; PREDICTION; IMAGES; ORGANS; HEAD;
D O I
10.4103/jcrt.jcrt_1438_21
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Artificial intelligence (AI) is playing an important role in radiation oncology. One of the most important applications is in radiotherapy physics. In this field, it has improved the automation of radiotherapy plan design and quality control (QC), thereby promoting and ensuring individualized precision treatment. This article reviews the applications and research on AI in the physics of radiotherapy and projects the prospects of AI in the following aspects: radiotherapy plan design, radiotherapy quality assurance, and QC, organs at risk contouring, dose prediction, etc.
引用
收藏
页码:1603 / 1607
页数:5
相关论文
共 40 条
[1]   Deep Machine Learning-A New Frontier in Artificial Intelligence Research [J].
Arel, Itamar ;
Rose, Derek C. ;
Karnowski, Thomas P. .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2010, 5 (04) :13-18
[2]   A Fast Neural Network Approach to Predict Lung Tumor Motion during Respiration for Radiation Therapy Applications [J].
Bukovsky, Ivo ;
Homma, Noriyasu ;
Ichiji, Kei ;
Cejnek, Matous ;
Slama, Matous ;
Benes, PeterM. ;
Bila, Jiri .
BIOMED RESEARCH INTERNATIONAL, 2015, 2015
[3]   A machine learning approach to the accurate prediction of multi-leaf collimator positional errors [J].
Carlson, Joel N. K. ;
Park, Jong Min ;
Park, So-Yeon ;
Park, Jong In ;
Choi, Yunseok ;
Ye, Sung-Joon .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (06) :2514-2531
[4]   Using deep learning to segment breast and fibroglandular tissue in MRI volumes [J].
Dalmis, Mehmet Ufuk ;
Litjens, Geert ;
Holland, Katharina ;
Setio, Arnaud ;
Mann, Ritse ;
Karssemeijer, Nico ;
Gubern-Merida, Albert .
MEDICAL PHYSICS, 2017, 44 (02) :533-546
[5]   3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture [J].
Dan Nguyen ;
Jia, Xun ;
Sher, David ;
Lin, Mu-Han ;
Iqbal, Zohaib ;
Liu, Hui ;
Jiang, Steve .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (06)
[6]   A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning [J].
Dan Nguyen ;
Long, Troy ;
Jia, Xun ;
Lu, Weiguo ;
Gu, Xuejun ;
Iqbal, Zohaib ;
Jiang, Steve .
SCIENTIFIC REPORTS, 2019, 9 (1)
[7]   Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique [J].
Fan, Jiawei ;
Wang, Jiazhou ;
Chen, Zhi ;
Hu, Chaosu ;
Zhang, Zhen ;
Hu, Weigang .
MEDICAL PHYSICS, 2019, 46 (01) :370-381
[8]   Functional-guided radiotherapy using knowledge-based planning [J].
Faught, Austin M. ;
Olsen, Lindsey ;
Schubert, Leah ;
Rusthoven, Chad ;
Castillo, Edward ;
Castillo, Richard ;
Zhang, Jingjing ;
Guerrero, Thomas ;
Miften, Moyed ;
Vinogradskiy, Yevgeniy .
RADIOTHERAPY AND ONCOLOGY, 2018, 129 (03) :494-498
[9]  
Hansen Christian Ronn, 2016, Clin Transl Radiat Oncol, V1, P2, DOI 10.1016/j.ctro.2016.08.001
[10]   Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks [J].
Ibragimov, Bulat ;
Xing, Lei .
MEDICAL PHYSICS, 2017, 44 (02) :547-557