Embedding path designs into kite systems

被引:13
|
作者
Colbourn, CJ [1 ]
Ling, ACH
Quattrocchi, G
机构
[1] Arizona State Univ, Tempe, AZ 85287 USA
[2] Univ Vermont, Burlington, VT 05405 USA
[3] Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
关键词
graph design; embedding; path;
D O I
10.1016/j.disc.2005.04.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be the triangle with an attached edge (i.e. D is the "kite", a graph having vertices {a(0), a(1), a(2), a(3)} and edges {a(0), a(1)), {a(0), a(2)}, {a(1), a(2)), {a(0), a(3)}). Bermond and Schonheim [G-decomposition of K-n, where G has four vertices or less, Discrete Math. 19 (1977) 113-120] proved that a kite-design of order n exists if and only if n equivalent to 0 or 1 (mod 8). Let (W, C) be a nontrivial kite-design of order n >= 8, and let V subset of W with vertical bar V vertical bar = v < n. A path design (V, 9) of order v and block size s is embedded into (W, C) if there is an injective mapping f : P -> C such that B is an induced subgraph of f (B) for every B is an element of P. For each n &3bond; 0 or 1 (mod 8), we determine the spectrum of all integers v such that there is a nontrivial path design of order v and block size 3 embedded into a kite-design of order n. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:38 / 48
页数:11
相关论文
共 49 条
  • [31] Reducible systems and embedding procedures in the canonical formalism
    Banerjee, R
    Barcelos-Neto, J
    ANNALS OF PHYSICS, 1998, 265 (02) : 134 - 154
  • [32] Embedding partial G-designs where G is a 4-cycle with a pendant edge
    Jenkins, P
    DISCRETE MATHEMATICS, 2005, 292 (1-3) : 83 - 93
  • [33] Automated Embedding Size Search in Deep Recommender Systems
    Liu, Haochen
    Zhao, Xiangyu
    Wang, Chong
    Liu, Xiaobing
    Tang, Jiliang
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 2307 - 2316
  • [34] EMBEDDING PARTIAL STEINER TRIPLE SYSTEMS WITH FEW TRIPLES
    Horsley, Daniel
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (03) : 1199 - 1213
  • [35] Embedding theorems for discrete dynamical systems and topological flows
    Shi, Ruxi
    STUDIA MATHEMATICA, 2023, 270 (01) : 57 - 72
  • [36] Embedding Steiner triple systems into Steiner systems S(2,4,v)
    Meszka, M
    Rosa, A
    DISCRETE MATHEMATICS, 2004, 274 (1-3) : 199 - 212
  • [37] AutoDim: Field-aware Embedding Dimension Search in Recommender Systems
    Zhao, Xiangyu
    Liu, Haochen
    Liu, Hui
    Tang, Jiliang
    Guo, Weiwei
    Shi, Jun
    Wang, Sida
    Gao, Huiji
    Long, Bo
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 3015 - 3022
  • [38] Deep Variational Embedding Representation on Neural Collaborative Filtering Recommender Systems
    Bobadilla, Jesus
    Duenas, Jorge
    Gutierrez, Abraham
    Ortega, Fernando
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [39] The solution of linear mechanical systems in terms of path superposition
    Xavier Magrans, Francesc
    Poblet-Puig, Jordi
    Rodriguez-Ferran, Antonio
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 85 : 111 - 125
  • [40] Optimization for rising or falling ridge systems in non-spherical designs
    Bayhan, Mahmut
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2014, 73 (5-8) : 1081 - 1094