Embedding path designs into kite systems

被引:13
|
作者
Colbourn, CJ [1 ]
Ling, ACH
Quattrocchi, G
机构
[1] Arizona State Univ, Tempe, AZ 85287 USA
[2] Univ Vermont, Burlington, VT 05405 USA
[3] Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
关键词
graph design; embedding; path;
D O I
10.1016/j.disc.2005.04.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be the triangle with an attached edge (i.e. D is the "kite", a graph having vertices {a(0), a(1), a(2), a(3)} and edges {a(0), a(1)), {a(0), a(2)}, {a(1), a(2)), {a(0), a(3)}). Bermond and Schonheim [G-decomposition of K-n, where G has four vertices or less, Discrete Math. 19 (1977) 113-120] proved that a kite-design of order n exists if and only if n equivalent to 0 or 1 (mod 8). Let (W, C) be a nontrivial kite-design of order n >= 8, and let V subset of W with vertical bar V vertical bar = v < n. A path design (V, 9) of order v and block size s is embedded into (W, C) if there is an injective mapping f : P -> C such that B is an induced subgraph of f (B) for every B is an element of P. For each n &3bond; 0 or 1 (mod 8), we determine the spectrum of all integers v such that there is a nontrivial path design of order v and block size 3 embedded into a kite-design of order n. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:38 / 48
页数:11
相关论文
共 49 条
  • [21] Difference embedding for recommender systems
    Peng Yi
    Xiongcai Cai
    Ziteng Li
    Data Mining and Knowledge Discovery, 2023, 37 : 948 - 969
  • [22] Difference embedding for recommender systems
    Yi, Peng
    Cai, Xiongcai
    Li, Ziteng
    DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 37 (02) : 948 - 969
  • [23] Fault tolerant path-embedding in locally twisted cubes
    Ye, Caiyue
    Ma, Meijie
    Wang, Weifan
    ARS COMBINATORIA, 2012, 107 : 51 - 63
  • [24] Embedding Steiner triple systems in hexagon triple systems
    Lindner, C. C.
    Quattrocchi, Gaetano
    Rodger, C. A.
    DISCRETE MATHEMATICS, 2009, 309 (02) : 487 - 490
  • [25] Exact embedding of two G-designs into a (G plus e)-design
    Quattrocchi, Gaetano
    Ragusa, Giorgio
    DISCRETE MATHEMATICS, 2012, 312 (03) : 517 - 523
  • [26] Embedding extended Mendelsohn triple systems
    Castellana, VE
    Raines, ME
    DISCRETE MATHEMATICS, 2002, 252 (1-3) : 47 - 55
  • [27] Embedding 5-cycle systems into pentagon triple systems
    Billington, Elizabeth J.
    Lindner, C. C.
    DISCRETE MATHEMATICS, 2009, 309 (14) : 4828 - 4834
  • [28] Flash Embedding: Storing Embedding Tables in SSD for Large-Scale Recommender Systems
    Wan, Hu
    Sun, Xuan
    Cui, Yufei
    Yang, Chia-Lin
    Kuo, Tei-Wei
    Xue, Chun Jason
    APSYS '21: PROCEEDINGS OF THE 12TH ACM SIGOPS ASIA-PACIFIC WORKSHOP ON SYSTEMS, 2021, : 9 - 16
  • [29] Probabilistic Modular Embedding for Stochastic Coordinated Systems
    Mariani, Stefano
    Omicini, Andrea
    COORDINATION MODELS AND LANGUAGES, COORDINATION 2013, 2013, 7890 : 151 - 165
  • [30] Design of exponential observers for nonlinear systems by embedding
    Rapaport, A
    Maloum, A
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2004, 14 (03) : 273 - 288