Embedding path designs into kite systems

被引:13
|
作者
Colbourn, CJ [1 ]
Ling, ACH
Quattrocchi, G
机构
[1] Arizona State Univ, Tempe, AZ 85287 USA
[2] Univ Vermont, Burlington, VT 05405 USA
[3] Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
关键词
graph design; embedding; path;
D O I
10.1016/j.disc.2005.04.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be the triangle with an attached edge (i.e. D is the "kite", a graph having vertices {a(0), a(1), a(2), a(3)} and edges {a(0), a(1)), {a(0), a(2)}, {a(1), a(2)), {a(0), a(3)}). Bermond and Schonheim [G-decomposition of K-n, where G has four vertices or less, Discrete Math. 19 (1977) 113-120] proved that a kite-design of order n exists if and only if n equivalent to 0 or 1 (mod 8). Let (W, C) be a nontrivial kite-design of order n >= 8, and let V subset of W with vertical bar V vertical bar = v < n. A path design (V, 9) of order v and block size s is embedded into (W, C) if there is an injective mapping f : P -> C such that B is an induced subgraph of f (B) for every B is an element of P. For each n &3bond; 0 or 1 (mod 8), we determine the spectrum of all integers v such that there is a nontrivial path design of order v and block size 3 embedded into a kite-design of order n. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:38 / 48
页数:11
相关论文
共 49 条
  • [11] Survey on path and cycle embedding in some networks
    Xu, Jun-Ming
    Ma, Meijie
    FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (02) : 217 - 252
  • [12] Minimum embedding of balanced P4-designs into 5-cycle systems
    Quattrocchi, G
    Mendelsohn, E
    DISCRETE MATHEMATICS, 2004, 279 (1-3) : 407 - 421
  • [13] Minimum embedding of Steiner triple systems into (K4-e)-designs I
    Colbourn, Charles J.
    Ling, Alan C. H.
    Quattrocchi, Gaetano
    DISCRETE MATHEMATICS, 2008, 308 (22) : 5308 - 5311
  • [14] Minimum embedding of Steiner triple systems into (K4 - e)-designs II
    Ling, Alan C. H.
    Colbourn, Charles J.
    Quattrocchi, Gaetano
    DISCRETE MATHEMATICS, 2009, 309 (02) : 400 - 411
  • [15] Embedding Partial k-Star Designs
    Hoffman, D. G.
    Roberts, Dan
    JOURNAL OF COMBINATORIAL DESIGNS, 2014, 22 (04) : 161 - 170
  • [16] The Doyen-Wilson theorem for kite systems
    Lo Faro, Giovanni
    Tripodi, Antoinette
    DISCRETE MATHEMATICS, 2006, 306 (21) : 2695 - 2701
  • [17] The Parameterized Space Complexity of Embedding Along a Path
    Hubie Chen
    Moritz Müller
    Theory of Computing Systems, 2017, 61 : 851 - 870
  • [18] The Parameterized Space Complexity of Embedding Along a Path
    Chen, Hubie
    Mueller, Moritz
    THEORY OF COMPUTING SYSTEMS, 2017, 61 (03) : 851 - 870
  • [19] Minimum embedding of P3-designs into TS(v, λ)
    Milici, Salvatore
    DISCRETE MATHEMATICS, 2008, 308 (2-3) : 331 - 338
  • [20] A finite embedding theorem for partial Steiner 3-designs
    Dukes, Peter J.
    Feng, Tao
    Ling, Alan C. H.
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 33 : 29 - 36