Analysis of the computational singular perturbation reduction method for chemical kinetics

被引:114
作者
Zagaris, A
Kaper, HG
Kaper, TJ
机构
[1] Boston Univ, Dept Math, Boston, MA 02215 USA
[2] Boston Univ, Ctr Biodynam, Boston, MA 02215 USA
[3] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
chemical kinetics; kinetic equations; dimension reduction; slow manifold; multiple time scales; computational singular perturbation method; CSP method; control theory; Michaelis-Menten-Henri equations;
D O I
10.1007/s00332-003-0582-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the asymptotic accuracy of the Computational Singular Perturbation (CSP) method developed by Lam and Goussis [The CSP method for simplifying kinetics, Int. J. Chem. Kin. 26 (1994) 461-486] to reduce the dimensionality of a system of chemical kinetics equations. The method, which is generally applicable to multiple-time scale problems arising in a broad array of scientific disciplines, exploits the presence of disparate time scales to model the dynamics by an evolution equation on a lower-dimensional slow manifold. In this article it is shown that the successive applications of the CSP algorithm generate, order by order, the asymptotic expansion of a slow manifold. The results are illustrated on the Michaelis-Menten-Henri equations of enzyme kinetics.
引用
收藏
页码:59 / 91
页数:33
相关论文
共 34 条
[1]  
[Anonymous], 1986, APPL LIE GROUPS DIFF
[2]   The parameterization method for invariant manifolds I:: Manifolds associated to non-resonant subspaces [J].
Cabré, X ;
Fontich, E ;
De la Llave, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (02) :283-328
[3]  
Carr J., 1981, APPL CTR MANIFOLD TH
[4]  
DAVIS MJ, 1999, J CHEM PHYS, V11, P589
[5]  
Fehrst A., 1975, ENZYME STRUCTURE MEC
[7]   THE STEADY-STATE AND EQUILIBRIUM APPROXIMATIONS - A GEOMETRICAL PICTURE [J].
FRASER, SJ .
JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (08) :4732-4738
[8]  
GORBAN AN, 2002, ARXIVCONDMAT0207231
[9]  
GOUSSIS DA, 1992, 24 S INT COMB COMB I, P113
[10]   Asymptotic solution of stiff PDEs with the CSP method: The reaction diffusion equation [J].
Hadjinicolaou, M ;
Goussis, DA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (03) :781-810