Nonlinear maps preserving Jordan triple η-*-products

被引:36
作者
Huo, Donghua [1 ,2 ]
Zheng, Baodong [1 ]
Liu, Hongyu [2 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Mudanjiang Normal Coll, Dept Math, Mudanjiang 157012, Peoples R China
关键词
Maps preserving Jordan; triple eta-*-product; von Neumann algebras; Isomorphism; VON-NEUMANN-ALGEBRAS; OPERATOR-ALGEBRAS; ADDITIVITY;
D O I
10.1016/j.jmaa.2015.05.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let eta not equal -1 be a non-zero complex number, and let phi be a not necessarily linear bijection between two von Neumann algebras, one of which has no central abelian projections, satisfying phi(I) = I and preserving the Jordan triple eta-*-product. It is showed that phi is a linear *-isomorphism if eta is not real and phi is the sum of a linear *-isomorphism and a conjugate linear *-isomorphism if eta is real. (C) 2015 Published by Elsevier Inc.
引用
收藏
页码:830 / 844
页数:15
相关论文
共 9 条
[1]   Maps preserving products XY-YX* on von Neumann algebras [J].
Bai, Zhaofang ;
Du, Shuanping .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (01) :103-109
[2]   Maps preserving product XY-YX* on factor von Neumann algebras [J].
Cui, Jianlian ;
Li, Chi-Kwong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) :833-842
[3]   Nonlinear maps preserving Jordan *-products [J].
Dai, Liqing ;
Lu, Fangyan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) :180-188
[4]   Nonlinear mappings preserving Jordan multiple *- product on factor von Neumann algebras [J].
Huo, Donghua ;
Zheng, Baodong ;
Xu, Jinli ;
Liu, Hongyu .
LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (05) :1026-1036
[5]   Additivity of Jordan maps on standard Jordan operator algebra [J].
Ji, Peisheng ;
Liu, Zhongyan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (01) :335-343
[6]   Nonlinear mappings preserving product XY plus YX* on factor von Neumann algebras [J].
Li, Changjing ;
Lu, Fangyan ;
Fang, Xiaochun .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) :2339-2345
[7]   Additivity of Jordan maps on standard operator algebras [J].
Lu, FY .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 357 :123-131
[8]   LIE HOMOMORPHISMS OF OPERATOR ALGEBRAS [J].
MIERS, CR .
PACIFIC JOURNAL OF MATHEMATICS, 1971, 38 (03) :717-&
[9]   QUADRATIC AND QUASI-QUADRATIC FUNCTIONALS [J].
SEMRL, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (04) :1105-1113