Parameter Individual Optimal Experimental Design and Calibration of Parametric Models

被引:3
作者
Palm, Nicolai [1 ]
Stroebl, Florian [2 ]
Palm, Herbert [2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Munich Ctr Machine Learning MCML, Munich, Germany
[2] Munich Univ Appl Sci, Inst Sustainable Energy Syst ISES, Munich, Germany
来源
IEEE ACCESS | 2022年 / 10卷
关键词
Maximum likelihood estimation; Parametric statistics; Covariance matrices; Computational modeling; Mathematical models; Calibration; Parameter estimation; Battery management systems; Aging; Parametric models; parameter estimation; design of experiments; optimal experimental design; battery aging; computer experiment; OPTIMIZATION; STATE;
D O I
10.1109/ACCESS.2022.3216364
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Parametric models allow to reflect system behavior in general and characterize individual system instances by specific parameter values. For a variety of scientific disciplines, model calibration by parameter quantification is therefore of central importance. As the time and cost of calibration experiments increases, the question of how to determine parameter values of required quality with a minimum number of experiments comes to the fore. In this paper, a methodology is introduced allowing to quantify and optimize achievable parameter extraction quality based on an experimental plan including a process and methods how to adapt the experimental plan for improved estimation of individually selectable parameters. The resulting parameter-individual optimal design of experiments (pi-OED) enables experimenters to extract a maximum of parameter-specific information from a given number of experiments. We demonstrate how to minimize variance or covariances of individually selectable parameter estimators by model-based calculation of the experimental designs. Using the Fisher Information Matrix in combination with the Cramer-Rao inequality, the pi-OED plan is reduced to a global optimization problem. The pi-OED workflow is demonstrated using computer experiments to calibrate a model describing calendrical aging of lithium-ion battery cells. Applying bootstrapping methods allows to also quantify parameter estimation distributions for further benchmarking. Comparing pi-OED based computer experimental results with those based on state-of-the-art designs of experiments, reveals its efficiency improvement. All computer experimental results are gained in Python and may be reproduced using a provided Jupyter Notebook along with the source code. Both are available under https://github.com/nicolaipalm/oed.
引用
收藏
页码:112515 / 112528
页数:14
相关论文
共 50 条
  • [31] Optimal experimental design for cytogenetic dose-response calibration curves
    Higueras, Manuel
    Howes, Adam
    Lopez-Fidalgo, Jesus
    INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 2020, 96 (07) : 894 - 902
  • [32] Optimal experimental design criterion for discriminating semiparametric models
    Otsu, Taisuke
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (12) : 4141 - 4150
  • [33] Iterative model-based optimal experimental design for mixture-process variable models to predict solubility
    Quillo, Gustavo Lunardon
    Bhonsale, Satyajeet
    Collas, Alain
    Xiouras, Christos
    Van Impe, Jan F. M.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 189 : 768 - 780
  • [34] Optimal experiment design in nonlinear parameter estimation with exact confidence regions
    Mukkula, Anwesh Reddy Gottu
    Paulen, Radoslav
    JOURNAL OF PROCESS CONTROL, 2019, 83 : 187 - 195
  • [35] Quantum Parameter Estimation: From Experimental Design to Constructive Algorithm
    Yang, Le
    Chen, Xi
    Zhang, Ming
    Dai, Hong-Yi
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2017, 68 (05) : 641 - 646
  • [36] Effective Parameterization of PEM Fuel Cell Models-Part II: Robust Parameter Subset Selection, Robust Optimal Experimental Design, and Multi-Step Parameter Identification Algorithm
    Goshtasbi, Alireza
    Chen, Jixin
    Waldecker, James R.
    Hirano, Shinichi
    Ersal, Tulga
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (04)
  • [37] Optimal input design for parameter estimation in a single and double tank system through direct control of parametric output sensitivities
    Chianeh, Hassan Akbari
    Stigter, J. D.
    Keesman, Karel J.
    JOURNAL OF PROCESS CONTROL, 2011, 21 (01) : 111 - 118
  • [38] Software supporting optimal experimental design: A case study of binary diffusion using EFCOSS
    Rasch, Arno
    Buecker, H. Martin
    Bardow, Andre
    COMPUTERS & CHEMICAL ENGINEERING, 2009, 33 (04) : 838 - 849
  • [39] Optimal Experimental Design for a Bistable Gene Regulatory Network
    Braniff, Nathan
    Richards, Addison
    Ingalls, Brian
    IFAC PAPERSONLINE, 2019, 52 (26): : 255 - 261
  • [40] Optimal experimental design and some related control problems
    Pronzato, Luc
    AUTOMATICA, 2008, 44 (02) : 303 - 325